{"title":"带时滞的脉冲随机偏积分微分方程的渐近稳定性","authors":"M. Diop, K. Ezzinbi, Modou Lo","doi":"10.1080/17442508.2013.879143","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence and asymptotic stability in the p-th moment of mild solutions of nonlinear impulsive stochastic partial functional integrodifferential equations with delays. We suppose that the linear part possesses a resolvent operator in the sense given in Grimmer [R. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Am. Math. Soc. 273(1) (1982), 333–349] and the nonlinear terms are assumed to be Lipschitz continuous. A fixed point approach is employed for achieving the required result. An example is provided to illustrate the results of this work.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Asymptotic stability of impulsive stochastic partial integrodifferential equations with delays\",\"authors\":\"M. Diop, K. Ezzinbi, Modou Lo\",\"doi\":\"10.1080/17442508.2013.879143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence and asymptotic stability in the p-th moment of mild solutions of nonlinear impulsive stochastic partial functional integrodifferential equations with delays. We suppose that the linear part possesses a resolvent operator in the sense given in Grimmer [R. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Am. Math. Soc. 273(1) (1982), 333–349] and the nonlinear terms are assumed to be Lipschitz continuous. A fixed point approach is employed for achieving the required result. An example is provided to illustrate the results of this work.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2013.879143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.879143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic stability of impulsive stochastic partial integrodifferential equations with delays
In this paper, we study the existence and asymptotic stability in the p-th moment of mild solutions of nonlinear impulsive stochastic partial functional integrodifferential equations with delays. We suppose that the linear part possesses a resolvent operator in the sense given in Grimmer [R. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Am. Math. Soc. 273(1) (1982), 333–349] and the nonlinear terms are assumed to be Lipschitz continuous. A fixed point approach is employed for achieving the required result. An example is provided to illustrate the results of this work.