基于bert -白化和动态融合模型的命名实体识别方法

Q3 Arts and Humanities
Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00041
Meng Liang, Yao Shi
{"title":"基于bert -白化和动态融合模型的命名实体识别方法","authors":"Meng Liang, Yao Shi","doi":"10.1109/ICNLP58431.2023.00041","DOIUrl":null,"url":null,"abstract":"In the context of Natural Language Processing (NLP), Named Entity Recognition (NER) plays a crucial role in tasks like entity relationship extraction and knowledge graph construction. The accuracy of Chinese NER heavily relies on the representation of word embeddings. However, traditional word representation methods like word2vec suffer from word ambiguity and singular word vectors. Similarly, BERT-based word embeddings also exhibit anisotropy. To tackle these challenges, we propose a novel NER method that leverages BERT-whitening and dynamic fusion of BERT’s output from different layers. The dynamic fusion module calculates a weighted sum of BERT’s output across multiple layers, while the whitening module applies a whitening operation to eliminate the anisotropy of word embeddings. By integrating these modules, our model effectively captures the characteristics of input words, providing robust support for subsequent decoding. We evaluate our approach on the CLUENER2020 Chinese fine-grained named entity recognition dataset. Experimental results demonstrate that our method outperforms the traditional BERT-BiLSTM-CRF model without external resources and data expansion, leading to significant improvements in performance.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"105 1","pages":"191-197"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Named Entity Recognition Method Based on BERT-whitening and Dynamic Fusion Model\",\"authors\":\"Meng Liang, Yao Shi\",\"doi\":\"10.1109/ICNLP58431.2023.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of Natural Language Processing (NLP), Named Entity Recognition (NER) plays a crucial role in tasks like entity relationship extraction and knowledge graph construction. The accuracy of Chinese NER heavily relies on the representation of word embeddings. However, traditional word representation methods like word2vec suffer from word ambiguity and singular word vectors. Similarly, BERT-based word embeddings also exhibit anisotropy. To tackle these challenges, we propose a novel NER method that leverages BERT-whitening and dynamic fusion of BERT’s output from different layers. The dynamic fusion module calculates a weighted sum of BERT’s output across multiple layers, while the whitening module applies a whitening operation to eliminate the anisotropy of word embeddings. By integrating these modules, our model effectively captures the characteristics of input words, providing robust support for subsequent decoding. We evaluate our approach on the CLUENER2020 Chinese fine-grained named entity recognition dataset. Experimental results demonstrate that our method outperforms the traditional BERT-BiLSTM-CRF model without external resources and data expansion, leading to significant improvements in performance.\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"105 1\",\"pages\":\"191-197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNLP58431.2023.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

在自然语言处理(NLP)的背景下,命名实体识别(NER)在实体关系提取和知识图谱构建等任务中起着至关重要的作用。中文NER识别的准确率很大程度上依赖于词嵌入的表示。然而,传统的词表示方法如word2vec存在词歧义和词向量奇异的问题。同样,基于bert的词嵌入也表现出各向异性。为了解决这些挑战,我们提出了一种新的NER方法,该方法利用BERT美白和不同层的BERT输出的动态融合。动态融合模块计算BERT跨多层输出的加权和,而美白模块应用美白操作来消除词嵌入的各向异性。通过集成这些模块,我们的模型有效地捕获了输入词的特征,为后续解码提供了强大的支持。我们在CLUENER2020中文细粒度命名实体识别数据集上评估了我们的方法。实验结果表明,该方法优于传统的BERT-BiLSTM-CRF模型,无需外部资源和数据扩展,性能显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Named Entity Recognition Method Based on BERT-whitening and Dynamic Fusion Model
In the context of Natural Language Processing (NLP), Named Entity Recognition (NER) plays a crucial role in tasks like entity relationship extraction and knowledge graph construction. The accuracy of Chinese NER heavily relies on the representation of word embeddings. However, traditional word representation methods like word2vec suffer from word ambiguity and singular word vectors. Similarly, BERT-based word embeddings also exhibit anisotropy. To tackle these challenges, we propose a novel NER method that leverages BERT-whitening and dynamic fusion of BERT’s output from different layers. The dynamic fusion module calculates a weighted sum of BERT’s output across multiple layers, while the whitening module applies a whitening operation to eliminate the anisotropy of word embeddings. By integrating these modules, our model effectively captures the characteristics of input words, providing robust support for subsequent decoding. We evaluate our approach on the CLUENER2020 Chinese fine-grained named entity recognition dataset. Experimental results demonstrate that our method outperforms the traditional BERT-BiLSTM-CRF model without external resources and data expansion, leading to significant improvements in performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信