Guangan Zhang, Zhibin Lu, Jibin Pu, Guizhi Wu, Kaiyuan Wang
{"title":"氮化铜薄膜的结构和热稳定性","authors":"Guangan Zhang, Zhibin Lu, Jibin Pu, Guizhi Wu, Kaiyuan Wang","doi":"10.1155/2013/725975","DOIUrl":null,"url":null,"abstract":"Copper nitride (Cu3N) thin films were deposited on glass via DC reactive magnetron sputtering at various N2 flow rates and partial pressures with 150°C substrate temperature. X-ray diffraction and scanning electron microscopy were used to characterize the microstructure and morphology. The results show that the films are composed of Cu3N crystallites with anti-ReO3 structure. The microstructure and morphology of the Cu3N film strongly depend on the N2 flow rate and partial pressure. The cross-sectional micrograph of the film shows typical columnar, compact structure. The thermal stabilities of the films were investigated using vacuum annealing under different temperature. The results show that the introducing of argon in the sputtering process decreases the thermal stability of the films.","PeriodicalId":13278,"journal":{"name":"Indian Journal of Materials Science","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Structure and Thermal Stability of Copper Nitride Thin Films\",\"authors\":\"Guangan Zhang, Zhibin Lu, Jibin Pu, Guizhi Wu, Kaiyuan Wang\",\"doi\":\"10.1155/2013/725975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper nitride (Cu3N) thin films were deposited on glass via DC reactive magnetron sputtering at various N2 flow rates and partial pressures with 150°C substrate temperature. X-ray diffraction and scanning electron microscopy were used to characterize the microstructure and morphology. The results show that the films are composed of Cu3N crystallites with anti-ReO3 structure. The microstructure and morphology of the Cu3N film strongly depend on the N2 flow rate and partial pressure. The cross-sectional micrograph of the film shows typical columnar, compact structure. The thermal stabilities of the films were investigated using vacuum annealing under different temperature. The results show that the introducing of argon in the sputtering process decreases the thermal stability of the films.\",\"PeriodicalId\":13278,\"journal\":{\"name\":\"Indian Journal of Materials Science\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/725975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/725975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure and Thermal Stability of Copper Nitride Thin Films
Copper nitride (Cu3N) thin films were deposited on glass via DC reactive magnetron sputtering at various N2 flow rates and partial pressures with 150°C substrate temperature. X-ray diffraction and scanning electron microscopy were used to characterize the microstructure and morphology. The results show that the films are composed of Cu3N crystallites with anti-ReO3 structure. The microstructure and morphology of the Cu3N film strongly depend on the N2 flow rate and partial pressure. The cross-sectional micrograph of the film shows typical columnar, compact structure. The thermal stabilities of the films were investigated using vacuum annealing under different temperature. The results show that the introducing of argon in the sputtering process decreases the thermal stability of the films.