定量信息流中的非均匀分布

M. Backes, Matthias Berg, Boris Köpf
{"title":"定量信息流中的非均匀分布","authors":"M. Backes, Matthias Berg, Boris Köpf","doi":"10.1145/1966913.1966960","DOIUrl":null,"url":null,"abstract":"Quantitative information-flow analysis (QIF) determines the amount of information that a program leaks about its secret inputs. For this, QIF requires an assumption about the distribution of the secret inputs. Existing techniques either consider the worst-case over a (sub-)set of all input distributions and thereby over-approximate the amount of leaked information; or they are tailored to reasoning about uniformly distributed inputs and are hence not directly applicable to non-uniform use-cases; or they deal with explicitly represented distributions, for which suitable abstraction techniques are only now emerging. In this paper we propose a novel approach for a precise QIF with respect to non-uniform input distributions: We present a reduction technique that transforms the problem of QIF w.r.t. non-uniform distributions into the problem of QIF for the uniform case. This reduction enables us to directly apply existing techniques for uniform QIF to the non-uniform case. We furthermore show that quantitative information flow is robust with respect to variations of the input distribution. This result allows us to perform QIF based on approximate input distributions, which can significantly simplify the analysis. Finally, we perform a case study where we illustrate our techniques by using them to analyze an integrity check on non-uniformly distributed PINs, as they are used for banking.","PeriodicalId":72308,"journal":{"name":"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Non-uniform distributions in quantitative information-flow\",\"authors\":\"M. Backes, Matthias Berg, Boris Köpf\",\"doi\":\"10.1145/1966913.1966960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantitative information-flow analysis (QIF) determines the amount of information that a program leaks about its secret inputs. For this, QIF requires an assumption about the distribution of the secret inputs. Existing techniques either consider the worst-case over a (sub-)set of all input distributions and thereby over-approximate the amount of leaked information; or they are tailored to reasoning about uniformly distributed inputs and are hence not directly applicable to non-uniform use-cases; or they deal with explicitly represented distributions, for which suitable abstraction techniques are only now emerging. In this paper we propose a novel approach for a precise QIF with respect to non-uniform input distributions: We present a reduction technique that transforms the problem of QIF w.r.t. non-uniform distributions into the problem of QIF for the uniform case. This reduction enables us to directly apply existing techniques for uniform QIF to the non-uniform case. We furthermore show that quantitative information flow is robust with respect to variations of the input distribution. This result allows us to perform QIF based on approximate input distributions, which can significantly simplify the analysis. Finally, we perform a case study where we illustrate our techniques by using them to analyze an integrity check on non-uniformly distributed PINs, as they are used for banking.\",\"PeriodicalId\":72308,\"journal\":{\"name\":\"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1966913.1966960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia CCS '22 : proceedings of the 2022 ACM Asia Conference on Computer and Communications Security : May 30-June 3, 2022, Nagasaki, Japan. ACM Asia Conference on Computer and Communications Security (17th : 2022 : Nagasaki-shi, Japan ; ...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1966913.1966960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

定量信息流分析(QIF)确定程序泄露的有关其秘密输入的信息量。为此,QIF需要一个关于秘密输入分布的假设。现有的技术要么考虑所有输入分布的(子)集的最坏情况,从而过度近似泄露的信息量;或者它们是针对均匀分布输入的推理而定制的,因此不能直接适用于非均匀用例;或者它们处理显式表示的分布,适合的抽象技术现在才出现。在本文中,我们提出了一种关于非均匀输入分布的精确QIF的新方法:我们提出了一种将非均匀分布的QIF问题转化为均匀情况下的QIF问题的约简技术。这种简化使我们能够直接将现有的均匀QIF技术应用于非均匀情况。我们进一步表明,相对于输入分布的变化,定量信息流是鲁棒的。该结果允许我们基于近似输入分布执行QIF,这可以显着简化分析。最后,我们将执行一个案例研究,通过使用它们来分析非均匀分布pin的完整性检查来说明我们的技术,因为它们用于银行业务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniform distributions in quantitative information-flow
Quantitative information-flow analysis (QIF) determines the amount of information that a program leaks about its secret inputs. For this, QIF requires an assumption about the distribution of the secret inputs. Existing techniques either consider the worst-case over a (sub-)set of all input distributions and thereby over-approximate the amount of leaked information; or they are tailored to reasoning about uniformly distributed inputs and are hence not directly applicable to non-uniform use-cases; or they deal with explicitly represented distributions, for which suitable abstraction techniques are only now emerging. In this paper we propose a novel approach for a precise QIF with respect to non-uniform input distributions: We present a reduction technique that transforms the problem of QIF w.r.t. non-uniform distributions into the problem of QIF for the uniform case. This reduction enables us to directly apply existing techniques for uniform QIF to the non-uniform case. We furthermore show that quantitative information flow is robust with respect to variations of the input distribution. This result allows us to perform QIF based on approximate input distributions, which can significantly simplify the analysis. Finally, we perform a case study where we illustrate our techniques by using them to analyze an integrity check on non-uniformly distributed PINs, as they are used for banking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信