误用遥感数据的危险:以森林覆盖为例

L. Fergusson, S. Saavedra, Juan F. Vargas
{"title":"误用遥感数据的危险:以森林覆盖为例","authors":"L. Fergusson, S. Saavedra, Juan F. Vargas","doi":"10.2139/ssrn.3596173","DOIUrl":null,"url":null,"abstract":"Research on deforestation has grown exponentially due to the availability of satellite-based measures of forest cover. One of the most popular is Global Forest Change (GFC). Using GFC, we estimate that the Colombian civil conflict increases ‘forest cover’. Using an alternative source that validates the same remote sensing images in the ground, we find the opposite effect. This occurs because, in spite of its name, GFC measures tree cover, including vegetation other than native forest. Most users of GFC seem unaware of this. In our case, most of the conflicting results are explained by GFC’s misclassification of oil palm crops as ‘forest’. Our findings call for caution when using automated classification of imagery for specific research questions.","PeriodicalId":7501,"journal":{"name":"Agricultural & Natural Resource Economics eJournal","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Perils of Misusing Remote Sensing Data: The Case of Forest Cover\",\"authors\":\"L. Fergusson, S. Saavedra, Juan F. Vargas\",\"doi\":\"10.2139/ssrn.3596173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on deforestation has grown exponentially due to the availability of satellite-based measures of forest cover. One of the most popular is Global Forest Change (GFC). Using GFC, we estimate that the Colombian civil conflict increases ‘forest cover’. Using an alternative source that validates the same remote sensing images in the ground, we find the opposite effect. This occurs because, in spite of its name, GFC measures tree cover, including vegetation other than native forest. Most users of GFC seem unaware of this. In our case, most of the conflicting results are explained by GFC’s misclassification of oil palm crops as ‘forest’. Our findings call for caution when using automated classification of imagery for specific research questions.\",\"PeriodicalId\":7501,\"journal\":{\"name\":\"Agricultural & Natural Resource Economics eJournal\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Natural Resource Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3596173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Natural Resource Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3596173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于有了基于卫星的森林覆盖测量方法,关于森林砍伐的研究呈指数增长。其中最受欢迎的是全球森林变化(GFC)。使用GFC,我们估计哥伦比亚内战增加了“森林覆盖”。使用另一种来源来验证地面上相同的遥感图像,我们发现了相反的效果。之所以会出现这种情况,是因为尽管它的名字是GFC,但它测量的是树木覆盖,包括原生森林以外的植被。大多数GFC用户似乎没有意识到这一点。在我们的案例中,大多数相互矛盾的结果都可以用GFC将油棕作物错误地分类为“森林”来解释。我们的研究结果呼吁在使用图像自动分类进行特定研究问题时要谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Perils of Misusing Remote Sensing Data: The Case of Forest Cover
Research on deforestation has grown exponentially due to the availability of satellite-based measures of forest cover. One of the most popular is Global Forest Change (GFC). Using GFC, we estimate that the Colombian civil conflict increases ‘forest cover’. Using an alternative source that validates the same remote sensing images in the ground, we find the opposite effect. This occurs because, in spite of its name, GFC measures tree cover, including vegetation other than native forest. Most users of GFC seem unaware of this. In our case, most of the conflicting results are explained by GFC’s misclassification of oil palm crops as ‘forest’. Our findings call for caution when using automated classification of imagery for specific research questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信