节律性岩溶泉的物理与解析模拟

IF 0.5 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Xianxuan Xiao, Qiang Zhang
{"title":"节律性岩溶泉的物理与解析模拟","authors":"Xianxuan Xiao, Qiang Zhang","doi":"10.4311/2020es0119","DOIUrl":null,"url":null,"abstract":"Rhythmic Karst Springs (RKSs) are rare geologic features that rhythmically outflow water. A mechanical model for the rhythmic flow with rhythmic spill-over configuration was constructed in this work. The evolution of the RKS was revealed by using geological process analysis. The analytical model can directly explain the existence of RKSs in soluble rock regions and their formation mechanism in nature. Visual observations and flow measurements were performed using a laboratory physical model of RKS. The physical model components included a soluble rock simulation area, karst pipes, cave-reservoir, karst depression terrain, water tank, rhythmic spring, and the outflow measurement system. Groups of tests were carried out to recreate the process of RKS functioning and to confirm the rhythmic cycle duration and the threshold of replenishment intensity. This research helped to interpret the behavior of rhythmic springs using the recharge and evacuation of the subsurface cave-reservoir by means of fluid mechanics and groundwater hydraulics theories.","PeriodicalId":50244,"journal":{"name":"Journal of Cave and Karst Studies","volume":"34 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Physical and analytical modeling of rhythmic karst springs\",\"authors\":\"Xianxuan Xiao, Qiang Zhang\",\"doi\":\"10.4311/2020es0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rhythmic Karst Springs (RKSs) are rare geologic features that rhythmically outflow water. A mechanical model for the rhythmic flow with rhythmic spill-over configuration was constructed in this work. The evolution of the RKS was revealed by using geological process analysis. The analytical model can directly explain the existence of RKSs in soluble rock regions and their formation mechanism in nature. Visual observations and flow measurements were performed using a laboratory physical model of RKS. The physical model components included a soluble rock simulation area, karst pipes, cave-reservoir, karst depression terrain, water tank, rhythmic spring, and the outflow measurement system. Groups of tests were carried out to recreate the process of RKS functioning and to confirm the rhythmic cycle duration and the threshold of replenishment intensity. This research helped to interpret the behavior of rhythmic springs using the recharge and evacuation of the subsurface cave-reservoir by means of fluid mechanics and groundwater hydraulics theories.\",\"PeriodicalId\":50244,\"journal\":{\"name\":\"Journal of Cave and Karst Studies\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cave and Karst Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4311/2020es0119\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cave and Karst Studies","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4311/2020es0119","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

节律性岩溶泉是一种罕见的具有节律性流出水的地质特征。本文建立了具有有节奏溢出结构的有节奏流动力学模型。通过地质过程分析揭示了RKS的演化过程。该分析模型可以直接解释可溶岩区rks的存在及其在自然界的形成机制。使用RKS的实验室物理模型进行视觉观察和流量测量。物理模型组成包括可溶岩模拟区、岩溶管道、溶洞水库、岩溶洼地地形、水箱、韵律泉和流出量测量系统。进行了多组试验,以重现RKS的功能过程,并确定了节律周期持续时间和补充强度的阈值。该研究有助于运用流体力学和地下水水力学理论解释地下洞室储层补给和抽放过程中韵律弹簧的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical and analytical modeling of rhythmic karst springs
Rhythmic Karst Springs (RKSs) are rare geologic features that rhythmically outflow water. A mechanical model for the rhythmic flow with rhythmic spill-over configuration was constructed in this work. The evolution of the RKS was revealed by using geological process analysis. The analytical model can directly explain the existence of RKSs in soluble rock regions and their formation mechanism in nature. Visual observations and flow measurements were performed using a laboratory physical model of RKS. The physical model components included a soluble rock simulation area, karst pipes, cave-reservoir, karst depression terrain, water tank, rhythmic spring, and the outflow measurement system. Groups of tests were carried out to recreate the process of RKS functioning and to confirm the rhythmic cycle duration and the threshold of replenishment intensity. This research helped to interpret the behavior of rhythmic springs using the recharge and evacuation of the subsurface cave-reservoir by means of fluid mechanics and groundwater hydraulics theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cave and Karst Studies
Journal of Cave and Karst Studies 地学-地球科学综合
CiteScore
1.90
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: The Journal of Cave and Karst Studies is a multidisciplinary journal devoted to cave and karst research. The Journal is seeking original, unpublished manuscripts concerning the scientific study of caves or other karst features. Authors do not need to be members of the National Speleological Society, but preference is given to manuscripts of importance to North American speleology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信