{"title":"利用电化学生物传感器追踪汗液中从趋化因子表达到炎症蛋白的炎症生命周期的新方法","authors":"Badrinath Jagannath, Madhavi Pali, Kai-Chun Lin, Devangsingh Sankhala, Pejman Naraghi, S. Muthukumar, Shalini Prasad","doi":"10.1002/admt.202101356","DOIUrl":null,"url":null,"abstract":"Inflammatory biomarkers are modulated during the course of any infectious disease, and currently, there is no wearable technology that enables patient management through noninvasive monitoring of these markers. This work is the first demonstration of the discovery and quantification of interferon‐inducible protein (IP‐10) and tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL), two key prognostic markers of infection in human sweat. The levels of IP‐10 and TRAIL in sweat are quantified, validated, and confirmed using a standard reference method through preclinical human subject studies. Additionally, simultaneous and continuous detection of IP‐10, TRAIL, and C‐reactive protein (CRP), for infection monitoring in sweat using a wearable SWEATSENSER device is demonstrated. The SWEATSENSER is ultrasensitive with a limit of detection of 1 pg mL−1 (IP‐10 and TRAIL), 0.2 ng mL−1 (CRP) with a wide dynamic range. Bland–Altman analysis demonstrates good agreement between SWEATSENSER and standard reference methods through human subject studies. Serum to sweat relationship demonstrates the potential of the SWEATSENSER to track infection etiology.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Novel Approach to Track the Lifecycle of Inflammation from Chemokine Expression to Inflammatory Proteins in Sweat Using Electrochemical Biosensor\",\"authors\":\"Badrinath Jagannath, Madhavi Pali, Kai-Chun Lin, Devangsingh Sankhala, Pejman Naraghi, S. Muthukumar, Shalini Prasad\",\"doi\":\"10.1002/admt.202101356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inflammatory biomarkers are modulated during the course of any infectious disease, and currently, there is no wearable technology that enables patient management through noninvasive monitoring of these markers. This work is the first demonstration of the discovery and quantification of interferon‐inducible protein (IP‐10) and tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL), two key prognostic markers of infection in human sweat. The levels of IP‐10 and TRAIL in sweat are quantified, validated, and confirmed using a standard reference method through preclinical human subject studies. Additionally, simultaneous and continuous detection of IP‐10, TRAIL, and C‐reactive protein (CRP), for infection monitoring in sweat using a wearable SWEATSENSER device is demonstrated. The SWEATSENSER is ultrasensitive with a limit of detection of 1 pg mL−1 (IP‐10 and TRAIL), 0.2 ng mL−1 (CRP) with a wide dynamic range. Bland–Altman analysis demonstrates good agreement between SWEATSENSER and standard reference methods through human subject studies. Serum to sweat relationship demonstrates the potential of the SWEATSENSER to track infection etiology.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202101356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202101356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Approach to Track the Lifecycle of Inflammation from Chemokine Expression to Inflammatory Proteins in Sweat Using Electrochemical Biosensor
Inflammatory biomarkers are modulated during the course of any infectious disease, and currently, there is no wearable technology that enables patient management through noninvasive monitoring of these markers. This work is the first demonstration of the discovery and quantification of interferon‐inducible protein (IP‐10) and tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL), two key prognostic markers of infection in human sweat. The levels of IP‐10 and TRAIL in sweat are quantified, validated, and confirmed using a standard reference method through preclinical human subject studies. Additionally, simultaneous and continuous detection of IP‐10, TRAIL, and C‐reactive protein (CRP), for infection monitoring in sweat using a wearable SWEATSENSER device is demonstrated. The SWEATSENSER is ultrasensitive with a limit of detection of 1 pg mL−1 (IP‐10 and TRAIL), 0.2 ng mL−1 (CRP) with a wide dynamic range. Bland–Altman analysis demonstrates good agreement between SWEATSENSER and standard reference methods through human subject studies. Serum to sweat relationship demonstrates the potential of the SWEATSENSER to track infection etiology.