GIFI‐PLS: QSAR中的非线性和不连续性建模

L. Eriksson, E. Johansson, F. Lindgren, S. Wold
{"title":"GIFI‐PLS: QSAR中的非线性和不连续性建模","authors":"L. Eriksson, E. Johansson, F. Lindgren, S. Wold","doi":"10.1002/1521-3838(200010)19:4<345::AID-QSAR345>3.0.CO;2-Q","DOIUrl":null,"url":null,"abstract":"This paper introduces to the QSAR community a novel method for modeling and understanding non-linear relationships between biological potency and chemical structure properties of molecules. The approach, GIFI-PLS, is based on ``binning'' of quantitative X-variables into categorical variables. Each categorical variable is then expanded into a set of linked 1/0 dummy variables, which enable modeling of non-linearity. By way of four QSAR data sets, it is demonstrated that GIFI-PLS is useful for modeling of non-linearity and discontinuity in QSAR, and that the predictive power of a QSAR model may improve.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"GIFI‐PLS: Modeling of Non‐Linearities and Discontinuities in QSAR\",\"authors\":\"L. Eriksson, E. Johansson, F. Lindgren, S. Wold\",\"doi\":\"10.1002/1521-3838(200010)19:4<345::AID-QSAR345>3.0.CO;2-Q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces to the QSAR community a novel method for modeling and understanding non-linear relationships between biological potency and chemical structure properties of molecules. The approach, GIFI-PLS, is based on ``binning'' of quantitative X-variables into categorical variables. Each categorical variable is then expanded into a set of linked 1/0 dummy variables, which enable modeling of non-linearity. By way of four QSAR data sets, it is demonstrated that GIFI-PLS is useful for modeling of non-linearity and discontinuity in QSAR, and that the predictive power of a QSAR model may improve.\",\"PeriodicalId\":20818,\"journal\":{\"name\":\"Quantitative Structure-activity Relationships\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Structure-activity Relationships\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/1521-3838(200010)19:4<345::AID-QSAR345>3.0.CO;2-Q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200010)19:4<345::AID-QSAR345>3.0.CO;2-Q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文向QSAR界介绍了一种新的方法来建模和理解分子的生物效力和化学结构性质之间的非线性关系。这种方法,即GIFI-PLS,是基于将定量x变量“归类”为分类变量。然后将每个分类变量扩展为一组链接的1/0虚拟变量,从而实现非线性建模。通过四个QSAR数据集,证明了GIFI-PLS对QSAR中的非线性和不连续建模是有用的,并且可以提高QSAR模型的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GIFI‐PLS: Modeling of Non‐Linearities and Discontinuities in QSAR
This paper introduces to the QSAR community a novel method for modeling and understanding non-linear relationships between biological potency and chemical structure properties of molecules. The approach, GIFI-PLS, is based on ``binning'' of quantitative X-variables into categorical variables. Each categorical variable is then expanded into a set of linked 1/0 dummy variables, which enable modeling of non-linearity. By way of four QSAR data sets, it is demonstrated that GIFI-PLS is useful for modeling of non-linearity and discontinuity in QSAR, and that the predictive power of a QSAR model may improve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信