计算设备的功率建模与表征:综述

Q1 Computer Science
S. Reda, Abdullah Nazma Nowroz
{"title":"计算设备的功率建模与表征:综述","authors":"S. Reda, Abdullah Nazma Nowroz","doi":"10.1561/1000000022","DOIUrl":null,"url":null,"abstract":"In this survey we describe the main research directions in pre-silicon power modeling and post-silicon power characterization. We review techniques in power modeling and characterization for three computing substrates: general-purpose processors, system-on-chip-based embedded systems, and field programmable gate arrays. We describe the basic principles that govern power consumption in digital circuits, and utilize these principles to describe high-level power modeling techniques for designs of the three computing substrates. Once a computing device is fabricated, direct measurements on the actual device reveal a great wealth of information about the device's power consumption under various operating conditions. We describe characterization techniques that integrate infrared imaging with electric current measurements to generate runtime power maps. The power maps can be used to validate design-time power models and to calibrate computer-aided design tools. We also describe empirical power characterization techniques for software power analysis and for adaptive power-aware computing. Finally, we provide a number of plausible future research directions for power modeling and characterization.","PeriodicalId":42137,"journal":{"name":"Foundations and Trends in Electronic Design Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Power Modeling and Characterization of Computing Devices: A Survey\",\"authors\":\"S. Reda, Abdullah Nazma Nowroz\",\"doi\":\"10.1561/1000000022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this survey we describe the main research directions in pre-silicon power modeling and post-silicon power characterization. We review techniques in power modeling and characterization for three computing substrates: general-purpose processors, system-on-chip-based embedded systems, and field programmable gate arrays. We describe the basic principles that govern power consumption in digital circuits, and utilize these principles to describe high-level power modeling techniques for designs of the three computing substrates. Once a computing device is fabricated, direct measurements on the actual device reveal a great wealth of information about the device's power consumption under various operating conditions. We describe characterization techniques that integrate infrared imaging with electric current measurements to generate runtime power maps. The power maps can be used to validate design-time power models and to calibrate computer-aided design tools. We also describe empirical power characterization techniques for software power analysis and for adaptive power-aware computing. Finally, we provide a number of plausible future research directions for power modeling and characterization.\",\"PeriodicalId\":42137,\"journal\":{\"name\":\"Foundations and Trends in Electronic Design Automation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Electronic Design Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/1000000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Electronic Design Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1000000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 26

摘要

本文介绍了前硅功率建模和后硅功率表征的主要研究方向。我们回顾了三种计算基板的功率建模和表征技术:通用处理器、基于片上系统的嵌入式系统和现场可编程门阵列。我们描述了控制数字电路功耗的基本原理,并利用这些原理描述了三种计算基板设计的高级功率建模技术。一旦计算设备被制造出来,对实际设备的直接测量就会揭示出在各种操作条件下该设备功耗的大量信息。我们描述了将红外成像与电流测量相结合以生成运行时功率图的表征技术。功率图可用于验证设计时功率模型和校准计算机辅助设计工具。我们还描述了用于软件功率分析和自适应功率感知计算的经验功率表征技术。最后,我们为功率建模和表征提供了一些可行的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Modeling and Characterization of Computing Devices: A Survey
In this survey we describe the main research directions in pre-silicon power modeling and post-silicon power characterization. We review techniques in power modeling and characterization for three computing substrates: general-purpose processors, system-on-chip-based embedded systems, and field programmable gate arrays. We describe the basic principles that govern power consumption in digital circuits, and utilize these principles to describe high-level power modeling techniques for designs of the three computing substrates. Once a computing device is fabricated, direct measurements on the actual device reveal a great wealth of information about the device's power consumption under various operating conditions. We describe characterization techniques that integrate infrared imaging with electric current measurements to generate runtime power maps. The power maps can be used to validate design-time power models and to calibrate computer-aided design tools. We also describe empirical power characterization techniques for software power analysis and for adaptive power-aware computing. Finally, we provide a number of plausible future research directions for power modeling and characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Electronic Design Automation
Foundations and Trends in Electronic Design Automation ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
0
期刊介绍: Foundations and Trends® in Electronic Design Automation publishes survey and tutorial articles in the following topics: - System Level Design - Behavioral Synthesis - Logic Design - Verification - Test - Physical Design - Circuit Level Design - Reconfigurable Systems - Analog Design Each issue of Foundations and Trends® in Electronic Design Automation comprises a 50-100 page monograph written by research leaders in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信