基于计算机视觉和深度学习的环境景观设计与规划系统

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiubo Chen
{"title":"基于计算机视觉和深度学习的环境景观设计与规划系统","authors":"Xiubo Chen","doi":"10.1515/jisys-2022-0092","DOIUrl":null,"url":null,"abstract":"Abstract Environmental landscaping is known to build, plan, and manage landscapes that consider the ecology of a site and produce gardens that benefit both people and the rest of the ecosystem. Landscaping and the environment are combined in landscape design planning to provide holistic answers to complex issues. Seeding native species and eradicating alien species are just a few ways humans influence the region’s ecosystem. Landscape architecture is the design of landscapes, urban areas, or gardens and their modification. It comprises the construction of urban and rural landscapes via coordinating the creation and management of open spaces and economics, finding a job, and working within a confined project budget. There was a lot of discussion about global warming and water shortages. There is a lot of hope to be found even in the face of seemingly insurmountable obstacles. AI is becoming more significant in many urban landscape planning and design elements with the advent of web 4.0 and Human-Centred computing. It created a virtual reality-based landscape to create deep neural networks (DNNs) to make deep learning (DL) more user-friendly and efficient. Users may only manipulate physical items in this environment to manually construct neural networks. These setups are automatically converted into a model, and the real-time testing set is reported and aware of the DNN models that users are producing. This research presents a novel strategy for combining DL-DNN with landscape architecture, providing a long-term solution to the problem of environmental pollution. Carbon dioxide levels are constantly checked when green plants are in and around the house. Plants, on either hand, remove toxins from the air, making it easier to maintain a healthy environment. Human-centered Artificial Intelligence-based web 4.0 may be used to assess and evaluate the data model. The study findings can be sent back into the design process for further modification and optimization.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"65 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Environmental landscape design and planning system based on computer vision and deep learning\",\"authors\":\"Xiubo Chen\",\"doi\":\"10.1515/jisys-2022-0092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Environmental landscaping is known to build, plan, and manage landscapes that consider the ecology of a site and produce gardens that benefit both people and the rest of the ecosystem. Landscaping and the environment are combined in landscape design planning to provide holistic answers to complex issues. Seeding native species and eradicating alien species are just a few ways humans influence the region’s ecosystem. Landscape architecture is the design of landscapes, urban areas, or gardens and their modification. It comprises the construction of urban and rural landscapes via coordinating the creation and management of open spaces and economics, finding a job, and working within a confined project budget. There was a lot of discussion about global warming and water shortages. There is a lot of hope to be found even in the face of seemingly insurmountable obstacles. AI is becoming more significant in many urban landscape planning and design elements with the advent of web 4.0 and Human-Centred computing. It created a virtual reality-based landscape to create deep neural networks (DNNs) to make deep learning (DL) more user-friendly and efficient. Users may only manipulate physical items in this environment to manually construct neural networks. These setups are automatically converted into a model, and the real-time testing set is reported and aware of the DNN models that users are producing. This research presents a novel strategy for combining DL-DNN with landscape architecture, providing a long-term solution to the problem of environmental pollution. Carbon dioxide levels are constantly checked when green plants are in and around the house. Plants, on either hand, remove toxins from the air, making it easier to maintain a healthy environment. Human-centered Artificial Intelligence-based web 4.0 may be used to assess and evaluate the data model. The study findings can be sent back into the design process for further modification and optimization.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,环境美化是建造、规划和管理景观,考虑到场地的生态,并产生有益于人类和生态系统其余部分的花园。景观与环境在景观设计规划中相结合,为复杂的问题提供全面的答案。播种本地物种和根除外来物种只是人类影响该地区生态系统的几种方式。景观建筑学是对景观、城市地区或花园及其改造的设计。它包括通过协调开放空间和经济的创造和管理、寻找工作和在有限的项目预算内工作来构建城市和农村景观。有很多关于全球变暖和水资源短缺的讨论。即使面对看似不可逾越的障碍,也有很多希望被发现。随着web 4.0和以人为中心的计算的出现,人工智能在许多城市景观规划和设计元素中变得越来越重要。它创造了一个基于虚拟现实的环境来创建深度神经网络(dnn),使深度学习(DL)更加用户友好和高效。在这种环境中,用户可能只能操作物理项目来手动构建神经网络。这些设置被自动转换为模型,实时测试集被报告,并意识到用户正在生成的DNN模型。本研究提出了一种将DL-DNN与景观建筑相结合的新策略,为解决环境污染问题提供了一个长期的解决方案。当绿色植物在房子里和周围时,二氧化碳水平会不断被检测。植物,无论从哪一方面,从空气中去除毒素,使其更容易维持一个健康的环境。以人为中心的基于人工智能的web 4.0可用于评估和评估数据模型。研究结果可以返回到设计过程中进行进一步的修改和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental landscape design and planning system based on computer vision and deep learning
Abstract Environmental landscaping is known to build, plan, and manage landscapes that consider the ecology of a site and produce gardens that benefit both people and the rest of the ecosystem. Landscaping and the environment are combined in landscape design planning to provide holistic answers to complex issues. Seeding native species and eradicating alien species are just a few ways humans influence the region’s ecosystem. Landscape architecture is the design of landscapes, urban areas, or gardens and their modification. It comprises the construction of urban and rural landscapes via coordinating the creation and management of open spaces and economics, finding a job, and working within a confined project budget. There was a lot of discussion about global warming and water shortages. There is a lot of hope to be found even in the face of seemingly insurmountable obstacles. AI is becoming more significant in many urban landscape planning and design elements with the advent of web 4.0 and Human-Centred computing. It created a virtual reality-based landscape to create deep neural networks (DNNs) to make deep learning (DL) more user-friendly and efficient. Users may only manipulate physical items in this environment to manually construct neural networks. These setups are automatically converted into a model, and the real-time testing set is reported and aware of the DNN models that users are producing. This research presents a novel strategy for combining DL-DNN with landscape architecture, providing a long-term solution to the problem of environmental pollution. Carbon dioxide levels are constantly checked when green plants are in and around the house. Plants, on either hand, remove toxins from the air, making it easier to maintain a healthy environment. Human-centered Artificial Intelligence-based web 4.0 may be used to assess and evaluate the data model. The study findings can be sent back into the design process for further modification and optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信