可理解的群体行为的机载进化

Simon Jones, A. Winfield, S. Hauert, M. Studley
{"title":"可理解的群体行为的机载进化","authors":"Simon Jones, A. Winfield, S. Hauert, M. Studley","doi":"10.1002/aisy.201900031","DOIUrl":null,"url":null,"abstract":"Designing the individual robot rules that give rise to desired emergent swarm behaviors is difficult. The common method of running evolutionary algorithms off‐line to automatically discover controllers in simulation suffers from two disadvantages: the generation of controllers is not situated in the swarm and so cannot be performed in the wild, and the evolved controllers are often opaque and hard to understand. A swarm of robots with considerable on‐board processing power is used to move the evolutionary process into the swarm, providing a potential route to continuously generating swarm behaviors adapted to the environments and tasks at hand. By making the evolved controllers human‐understandable using behavior trees, the controllers can be queried, explained, and even improved by a human user. A swarm system capable of evolving and executing fit controllers entirely onboard physical robots in less than 15 min is demonstrated. One of the evolved controllers is then analyzed to explain its functionality. With the insights gained, a significant performance improvement in the evolved controller is engineered.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Onboard Evolution of Understandable Swarm Behaviors\",\"authors\":\"Simon Jones, A. Winfield, S. Hauert, M. Studley\",\"doi\":\"10.1002/aisy.201900031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing the individual robot rules that give rise to desired emergent swarm behaviors is difficult. The common method of running evolutionary algorithms off‐line to automatically discover controllers in simulation suffers from two disadvantages: the generation of controllers is not situated in the swarm and so cannot be performed in the wild, and the evolved controllers are often opaque and hard to understand. A swarm of robots with considerable on‐board processing power is used to move the evolutionary process into the swarm, providing a potential route to continuously generating swarm behaviors adapted to the environments and tasks at hand. By making the evolved controllers human‐understandable using behavior trees, the controllers can be queried, explained, and even improved by a human user. A swarm system capable of evolving and executing fit controllers entirely onboard physical robots in less than 15 min is demonstrated. One of the evolved controllers is then analyzed to explain its functionality. With the insights gained, a significant performance improvement in the evolved controller is engineered.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.201900031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.201900031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

设计个体机器人规则以产生期望的突发群体行为是困难的。在模拟中,运行进化算法来自动发现控制器的常见方法有两个缺点:控制器的生成不位于群体中,因此不能在野外执行,并且进化的控制器通常是不透明的,难以理解。一群具有相当机载处理能力的机器人被用来将进化过程转移到群体中,为不断产生适应环境和手头任务的群体行为提供了一条潜在的途径。通过使用行为树使进化的控制器易于理解,控制器可以被人类用户查询、解释甚至改进。演示了一种能够在不到15分钟内完全在物理机器人上进化和执行拟合控制器的群系统。然后对其中一个进化的控制器进行分析,以解释其功能。随着获得的见解,在进化的控制器设计显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Onboard Evolution of Understandable Swarm Behaviors
Designing the individual robot rules that give rise to desired emergent swarm behaviors is difficult. The common method of running evolutionary algorithms off‐line to automatically discover controllers in simulation suffers from two disadvantages: the generation of controllers is not situated in the swarm and so cannot be performed in the wild, and the evolved controllers are often opaque and hard to understand. A swarm of robots with considerable on‐board processing power is used to move the evolutionary process into the swarm, providing a potential route to continuously generating swarm behaviors adapted to the environments and tasks at hand. By making the evolved controllers human‐understandable using behavior trees, the controllers can be queried, explained, and even improved by a human user. A swarm system capable of evolving and executing fit controllers entirely onboard physical robots in less than 15 min is demonstrated. One of the evolved controllers is then analyzed to explain its functionality. With the insights gained, a significant performance improvement in the evolved controller is engineered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信