基于视觉显著性的基于内容的图像检索方法

IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Aamir Khan, A. S. Jalal
{"title":"基于视觉显著性的基于内容的图像检索方法","authors":"Aamir Khan, A. S. Jalal","doi":"10.4018/ijcini.2021010101","DOIUrl":null,"url":null,"abstract":"During the past two decades an enormous amount of visual information has been generated; as a result, content-based image retrieval (CBIR) has received considerable attention. In CBIR the image is used as a query to find the most similar images. One of the biggest challenges in CBIR system is to fill up the “semantic gap,” which is the gap between low-level visual features and the high-level semantic concepts of an image. In this paper, the authors have proposed a saliency-based CBIR system that utilizes the semantic information of image and users search intention. In the proposed model, firstly a significant region is identified with the help of method structured matrix decomposition (SMD) using high-level priors that highlight the prominent area of the image. After that, a two-dimensional principal component analysis (2DPCA) is used as a feature, which is compact and effectively used for fast recognition. Experiment results are validated on different image dataset having an extensive collection of semantic classifications.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"1 1","pages":"1-15"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Visual Saliency-Based Approach for Content-Based Image Retrieval\",\"authors\":\"Aamir Khan, A. S. Jalal\",\"doi\":\"10.4018/ijcini.2021010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the past two decades an enormous amount of visual information has been generated; as a result, content-based image retrieval (CBIR) has received considerable attention. In CBIR the image is used as a query to find the most similar images. One of the biggest challenges in CBIR system is to fill up the “semantic gap,” which is the gap between low-level visual features and the high-level semantic concepts of an image. In this paper, the authors have proposed a saliency-based CBIR system that utilizes the semantic information of image and users search intention. In the proposed model, firstly a significant region is identified with the help of method structured matrix decomposition (SMD) using high-level priors that highlight the prominent area of the image. After that, a two-dimensional principal component analysis (2DPCA) is used as a feature, which is compact and effectively used for fast recognition. Experiment results are validated on different image dataset having an extensive collection of semantic classifications.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"1 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.2021010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.2021010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

摘要

在过去的二十年里,产生了大量的视觉信息;因此,基于内容的图像检索(CBIR)受到了广泛的关注。在CBIR中,图像被用作查找最相似图像的查询。CBIR系统最大的挑战之一是填补“语义空白”,即图像的低级视觉特征和高级语义概念之间的空白。本文提出了一种基于显著性的CBIR系统,该系统利用图像的语义信息和用户的搜索意图。在该模型中,首先利用结构化矩阵分解(SMD)方法识别重要区域,使用高阶先验来突出图像的突出区域。然后,利用二维主成分分析(2DPCA)作为特征,该特征结构紧凑,可以有效地用于快速识别。实验结果在具有广泛语义分类集合的不同图像数据集上进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Visual Saliency-Based Approach for Content-Based Image Retrieval
During the past two decades an enormous amount of visual information has been generated; as a result, content-based image retrieval (CBIR) has received considerable attention. In CBIR the image is used as a query to find the most similar images. One of the biggest challenges in CBIR system is to fill up the “semantic gap,” which is the gap between low-level visual features and the high-level semantic concepts of an image. In this paper, the authors have proposed a saliency-based CBIR system that utilizes the semantic information of image and users search intention. In the proposed model, firstly a significant region is identified with the help of method structured matrix decomposition (SMD) using high-level priors that highlight the prominent area of the image. After that, a two-dimensional principal component analysis (2DPCA) is used as a feature, which is compact and effectively used for fast recognition. Experiment results are validated on different image dataset having an extensive collection of semantic classifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
11.10%
发文量
16
期刊介绍: The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信