hitomezashi设计的数学规范

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
K. Seaton, Carol Hayes
{"title":"hitomezashi设计的数学规范","authors":"K. Seaton, Carol Hayes","doi":"10.1080/17513472.2023.2187999","DOIUrl":null,"url":null,"abstract":"Two mathematical aspects of the centuries-old Japanese sashiko stitching form hitomezashi are discussed: the encoding of designs using words from a binary alphabet, and duality. Traditional hitomezashi designs are analysed using these two ideas. Self-dual hitomezashi designs related to Fibonacci snowflakes, which we term Pell persimmon polyomino patterns, are proposed. Both these designs and the binary words used to generate them appear to be new to their respective literatures. GRAPHICAL ABSTRACT","PeriodicalId":42612,"journal":{"name":"Journal of Mathematics and the Arts","volume":"79 1","pages":"156 - 177"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mathematical specification of hitomezashi designs\",\"authors\":\"K. Seaton, Carol Hayes\",\"doi\":\"10.1080/17513472.2023.2187999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two mathematical aspects of the centuries-old Japanese sashiko stitching form hitomezashi are discussed: the encoding of designs using words from a binary alphabet, and duality. Traditional hitomezashi designs are analysed using these two ideas. Self-dual hitomezashi designs related to Fibonacci snowflakes, which we term Pell persimmon polyomino patterns, are proposed. Both these designs and the binary words used to generate them appear to be new to their respective literatures. GRAPHICAL ABSTRACT\",\"PeriodicalId\":42612,\"journal\":{\"name\":\"Journal of Mathematics and the Arts\",\"volume\":\"79 1\",\"pages\":\"156 - 177\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and the Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17513472.2023.2187999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and the Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17513472.2023.2187999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

几个世纪以来,日本sashiko拼接形式hitomezashi的两个数学方面进行了讨论:使用二进制字母的编码设计,和对偶性。利用这两种思想对传统的一目之画进行了分析。提出了与斐波那契雪花相关的自对偶偶偶设计,我们称之为佩尔柿子多米诺图案。这些设计和用于生成它们的二进制词在各自的文献中似乎都是新的。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical specification of hitomezashi designs
Two mathematical aspects of the centuries-old Japanese sashiko stitching form hitomezashi are discussed: the encoding of designs using words from a binary alphabet, and duality. Traditional hitomezashi designs are analysed using these two ideas. Self-dual hitomezashi designs related to Fibonacci snowflakes, which we term Pell persimmon polyomino patterns, are proposed. Both these designs and the binary words used to generate them appear to be new to their respective literatures. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and the Arts
Journal of Mathematics and the Arts MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
0.50
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信