具有相同独立支配数的单环图的刻画

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Min-Jen Jou, Jenq-Jong Lin, Guan-Yu Lin
{"title":"具有相同独立支配数的单环图的刻画","authors":"Min-Jen Jou, Jenq-Jong Lin, Guan-Yu Lin","doi":"10.12988/ams.2023.917395","DOIUrl":null,"url":null,"abstract":"A set D of vertices of G is an independent dominating set if no two vertices of D are adjacent and every vertex not in D is adjacent to at lest one vertex in D . The independent domination number of a graph G , denoted by i ( G ), is the minimum cardinality of an independent dominating set in G . A unicyclic graph is a connected graph containing exactly one cycle. For k ≥ 1, let H ( k ) be the set of unicyclic graphs H satisfying i ( H ) = k . In this paper, we provide a constructive characterization of H ( k ) for all k ≥ 1.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of unicyclic graphs with the same independent domination number\",\"authors\":\"Min-Jen Jou, Jenq-Jong Lin, Guan-Yu Lin\",\"doi\":\"10.12988/ams.2023.917395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set D of vertices of G is an independent dominating set if no two vertices of D are adjacent and every vertex not in D is adjacent to at lest one vertex in D . The independent domination number of a graph G , denoted by i ( G ), is the minimum cardinality of an independent dominating set in G . A unicyclic graph is a connected graph containing exactly one cycle. For k ≥ 1, let H ( k ) be the set of unicyclic graphs H satisfying i ( H ) = k . In this paper, we provide a constructive characterization of H ( k ) for all k ≥ 1.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ams.2023.917395\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ams.2023.917395","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

G的顶点集合D是一个独立支配集,如果D中没有两个顶点相邻,并且不在D中的每个顶点至少与D中的一个顶点相邻。图G的独立支配数用i (G)表示,它是G中独立支配集的最小基数。单环图是只包含一个环的连通图。当k≥1时,设H (k)为满足i (H) = k的单环图H的集合。在本文中,我们给出了所有k≥1时H (k)的构造性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of unicyclic graphs with the same independent domination number
A set D of vertices of G is an independent dominating set if no two vertices of D are adjacent and every vertex not in D is adjacent to at lest one vertex in D . The independent domination number of a graph G , denoted by i ( G ), is the minimum cardinality of an independent dominating set in G . A unicyclic graph is a connected graph containing exactly one cycle. For k ≥ 1, let H ( k ) be the set of unicyclic graphs H satisfying i ( H ) = k . In this paper, we provide a constructive characterization of H ( k ) for all k ≥ 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信