一类具有根立方零的弱对称代数的Hochschild上同调

Q4 Mathematics
T. Furuya, Daiki Obara
{"title":"一类具有根立方零的弱对称代数的Hochschild上同调","authors":"T. Furuya, Daiki Obara","doi":"10.55937/sut/1358521958","DOIUrl":null,"url":null,"abstract":"In this paper we provide an explicit minimal projective bimodule resolution for some weakly symmetric algebras with radical cube zero. Then by using this resolution we compute the dimension of its Hochschild cohomology groups. AMS 2010 Mathematics Subject Classication. 16D50, 16E40, 18G05.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hochschild cohomology of a class of weakly symmetric algebras with radical cube zero\",\"authors\":\"T. Furuya, Daiki Obara\",\"doi\":\"10.55937/sut/1358521958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide an explicit minimal projective bimodule resolution for some weakly symmetric algebras with radical cube zero. Then by using this resolution we compute the dimension of its Hochschild cohomology groups. AMS 2010 Mathematics Subject Classication. 16D50, 16E40, 18G05.\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1358521958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1358521958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了一些具有根号立方根零的弱对称代数的显式最小射影双模解析。然后利用这个分辨率计算其Hochschild上同群的维数。AMS 2010数学学科分类。16D50, 16E40, 18G05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hochschild cohomology of a class of weakly symmetric algebras with radical cube zero
In this paper we provide an explicit minimal projective bimodule resolution for some weakly symmetric algebras with radical cube zero. Then by using this resolution we compute the dimension of its Hochschild cohomology groups. AMS 2010 Mathematics Subject Classication. 16D50, 16E40, 18G05.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信