{"title":"磁场变化的插值算法","authors":"Dmitrii Vishniakov, I. Lygin, D. Arutyunyan","doi":"10.5194/egusphere-egu21-12047","DOIUrl":null,"url":null,"abstract":"<p>To solve many geological and geophysical problems, it is very important to study variations of the Earth's magnetic field. The observed variations are usually obtained from data from observatories or temporary variation stations. However, while performing various regional magnetic prospecting works, the network of observatories is not complete enough to account for the variation field correctly.</p><p>In this regard, it is becoming necessary to interpolate the data on variations from the points of irregular network. At the same time, obtaining the optimal algorithm is an ambiguous task, its solution requires taking a whole list of factors into account that determine regularity of distribution of physical parameters over the area.</p><p>This project represents an interpolation algorithm using method of complex weighting coefficients. The technique was tested on data from the Intermagnet observatories for central Europe, and the obtained accuracy was ± 2 nT. Comparative analysis with known interpolation methods by interpolation methods was carried out.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm for interpolation of magnetic field variations\",\"authors\":\"Dmitrii Vishniakov, I. Lygin, D. Arutyunyan\",\"doi\":\"10.5194/egusphere-egu21-12047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To solve many geological and geophysical problems, it is very important to study variations of the Earth's magnetic field. The observed variations are usually obtained from data from observatories or temporary variation stations. However, while performing various regional magnetic prospecting works, the network of observatories is not complete enough to account for the variation field correctly.</p><p>In this regard, it is becoming necessary to interpolate the data on variations from the points of irregular network. At the same time, obtaining the optimal algorithm is an ambiguous task, its solution requires taking a whole list of factors into account that determine regularity of distribution of physical parameters over the area.</p><p>This project represents an interpolation algorithm using method of complex weighting coefficients. The technique was tested on data from the Intermagnet observatories for central Europe, and the obtained accuracy was ± 2 nT. Comparative analysis with known interpolation methods by interpolation methods was carried out.</p>\",\"PeriodicalId\":22413,\"journal\":{\"name\":\"The EGU General Assembly\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EGU General Assembly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-egu21-12047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EGU General Assembly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/egusphere-egu21-12047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algorithm for interpolation of magnetic field variations
To solve many geological and geophysical problems, it is very important to study variations of the Earth's magnetic field. The observed variations are usually obtained from data from observatories or temporary variation stations. However, while performing various regional magnetic prospecting works, the network of observatories is not complete enough to account for the variation field correctly.
In this regard, it is becoming necessary to interpolate the data on variations from the points of irregular network. At the same time, obtaining the optimal algorithm is an ambiguous task, its solution requires taking a whole list of factors into account that determine regularity of distribution of physical parameters over the area.
This project represents an interpolation algorithm using method of complex weighting coefficients. The technique was tested on data from the Intermagnet observatories for central Europe, and the obtained accuracy was ± 2 nT. Comparative analysis with known interpolation methods by interpolation methods was carried out.