{"title":"γ-生育三烯醇通过抑制典型Wnt和Hedgehog信号传导介导人乳腺癌细胞上皮向间质转化的逆转","authors":"R. Ahmed, P. Sylvester","doi":"10.5772/INTECHOPEN.78273","DOIUrl":null,"url":null,"abstract":"γ-Tocotrienol, a natural isoform within the vitamin E family of compounds, displays potent antiproliferative, apoptotic and reversal of epithelial-to-mesenchymal transition (EMT) activity against breast cancer using treatment doses that have little or no effect on normal cell viability. EMT is a route by which epithelial cells undergo various biochemical alterations leading to the acquisition of mesenchymal traits. Several aberrant signaling pathways are involved in EMT-dependent cancer metastasis. Specifically, dysregulation of the canonical Wnt and Hedgehog pathways are intimately involved in promoting breast cancer EMT and metastasis. Therefore, studies were conducted to examine effects of γ-tocotrienol on Wnt and Hedgehog signaling. Results from these studies demon- strate that γ-tocotrienol significantly inhibits canonical Wnt and Hedgehog signaling by inhibiting receptors, co-receptors and ligand expression, as well as inhibiting expression of cytosolic and nuclear signaling proteins within these pathways. Additional studies showed that γ-tocotrienol treatment increased the expression of negative regulators of both the Wnt and Hedgehog pathways. These findings demonstrate that γ-tocotrienol reversal of EMT is mediated, at least in part, through the inhibition of canonical Wnt and Hedgehog signaling, and strongly suggest that this form of vitamin E may provide significant benefit in the prevention and treatment of metastatic breast cancer. and signal transduction. These findings provide evidence to explanation the wide range of inhibitory ligand, FZD7/LRP6 complex activation, DVL2 and cyclin D1 and a corresponding increase in Naked 1 level. Additionally, γ-tocotrienol inhibits Hedgehog signaling by decreasing the expression of Shh ligand, PTCH2, Smo, GSK3β, and Gli1 associated with a corresponding increase in SUFU levels. Several other cytosolic and nuclear proteins were minimized which can ultimately lead to a suppression in gene expression associated with EMT.","PeriodicalId":23478,"journal":{"name":"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"γ-Tocotrienol Reversal of Epithelial-to-Mesenchymal Transition in Human Breast Cancer Cells is Mediated through a Suppression of Canonical Wnt and Hedgehog Signaling\",\"authors\":\"R. Ahmed, P. Sylvester\",\"doi\":\"10.5772/INTECHOPEN.78273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"γ-Tocotrienol, a natural isoform within the vitamin E family of compounds, displays potent antiproliferative, apoptotic and reversal of epithelial-to-mesenchymal transition (EMT) activity against breast cancer using treatment doses that have little or no effect on normal cell viability. EMT is a route by which epithelial cells undergo various biochemical alterations leading to the acquisition of mesenchymal traits. Several aberrant signaling pathways are involved in EMT-dependent cancer metastasis. Specifically, dysregulation of the canonical Wnt and Hedgehog pathways are intimately involved in promoting breast cancer EMT and metastasis. Therefore, studies were conducted to examine effects of γ-tocotrienol on Wnt and Hedgehog signaling. Results from these studies demon- strate that γ-tocotrienol significantly inhibits canonical Wnt and Hedgehog signaling by inhibiting receptors, co-receptors and ligand expression, as well as inhibiting expression of cytosolic and nuclear signaling proteins within these pathways. Additional studies showed that γ-tocotrienol treatment increased the expression of negative regulators of both the Wnt and Hedgehog pathways. These findings demonstrate that γ-tocotrienol reversal of EMT is mediated, at least in part, through the inhibition of canonical Wnt and Hedgehog signaling, and strongly suggest that this form of vitamin E may provide significant benefit in the prevention and treatment of metastatic breast cancer. and signal transduction. These findings provide evidence to explanation the wide range of inhibitory ligand, FZD7/LRP6 complex activation, DVL2 and cyclin D1 and a corresponding increase in Naked 1 level. Additionally, γ-tocotrienol inhibits Hedgehog signaling by decreasing the expression of Shh ligand, PTCH2, Smo, GSK3β, and Gli1 associated with a corresponding increase in SUFU levels. Several other cytosolic and nuclear proteins were minimized which can ultimately lead to a suppression in gene expression associated with EMT.\",\"PeriodicalId\":23478,\"journal\":{\"name\":\"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.78273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.78273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
γ-Tocotrienol Reversal of Epithelial-to-Mesenchymal Transition in Human Breast Cancer Cells is Mediated through a Suppression of Canonical Wnt and Hedgehog Signaling
γ-Tocotrienol, a natural isoform within the vitamin E family of compounds, displays potent antiproliferative, apoptotic and reversal of epithelial-to-mesenchymal transition (EMT) activity against breast cancer using treatment doses that have little or no effect on normal cell viability. EMT is a route by which epithelial cells undergo various biochemical alterations leading to the acquisition of mesenchymal traits. Several aberrant signaling pathways are involved in EMT-dependent cancer metastasis. Specifically, dysregulation of the canonical Wnt and Hedgehog pathways are intimately involved in promoting breast cancer EMT and metastasis. Therefore, studies were conducted to examine effects of γ-tocotrienol on Wnt and Hedgehog signaling. Results from these studies demon- strate that γ-tocotrienol significantly inhibits canonical Wnt and Hedgehog signaling by inhibiting receptors, co-receptors and ligand expression, as well as inhibiting expression of cytosolic and nuclear signaling proteins within these pathways. Additional studies showed that γ-tocotrienol treatment increased the expression of negative regulators of both the Wnt and Hedgehog pathways. These findings demonstrate that γ-tocotrienol reversal of EMT is mediated, at least in part, through the inhibition of canonical Wnt and Hedgehog signaling, and strongly suggest that this form of vitamin E may provide significant benefit in the prevention and treatment of metastatic breast cancer. and signal transduction. These findings provide evidence to explanation the wide range of inhibitory ligand, FZD7/LRP6 complex activation, DVL2 and cyclin D1 and a corresponding increase in Naked 1 level. Additionally, γ-tocotrienol inhibits Hedgehog signaling by decreasing the expression of Shh ligand, PTCH2, Smo, GSK3β, and Gli1 associated with a corresponding increase in SUFU levels. Several other cytosolic and nuclear proteins were minimized which can ultimately lead to a suppression in gene expression associated with EMT.