同伦型理论中的三次方法及一元基础

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Anders Mörtberg
{"title":"同伦型理论中的三次方法及一元基础","authors":"Anders Mörtberg","doi":"10.1017/s0960129521000311","DOIUrl":null,"url":null,"abstract":"\n Cubical methods have played an important role in the development of Homotopy Type Theory and Univalent Foundations (HoTT/UF) in recent years. The original motivation behind these developments was to give constructive meaning to Voevodsky’s univalence axiom, but they have since then led to a range of new results. Among the achievements of these methods is the design of new type theories and proof assistants with native support for notions from HoTT/UF, syntactic and semantic consistency results for HoTT/UF, as well as a variety of independence results and establishing that the univalence axiom does not increase the proof theoretic strength of type theory. This paper is based on lecture notes that were written for the 2019 Homotopy Type Theory Summer School at Carnegie Mellon University. The goal of these lectures was to give an introduction to cubical methods and provide sufficient background in order to make the current research in this very active area of HoTT/UF more accessible to newcomers. The focus of these notes is hence on both the syntactic and semantic aspects of these methods, in particular on cubical type theory and the various cubical set categories that give meaning to these theories.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"15 1","pages":"1147-1184"},"PeriodicalIF":0.4000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cubical methods in homotopy type theory and univalent foundations\",\"authors\":\"Anders Mörtberg\",\"doi\":\"10.1017/s0960129521000311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cubical methods have played an important role in the development of Homotopy Type Theory and Univalent Foundations (HoTT/UF) in recent years. The original motivation behind these developments was to give constructive meaning to Voevodsky’s univalence axiom, but they have since then led to a range of new results. Among the achievements of these methods is the design of new type theories and proof assistants with native support for notions from HoTT/UF, syntactic and semantic consistency results for HoTT/UF, as well as a variety of independence results and establishing that the univalence axiom does not increase the proof theoretic strength of type theory. This paper is based on lecture notes that were written for the 2019 Homotopy Type Theory Summer School at Carnegie Mellon University. The goal of these lectures was to give an introduction to cubical methods and provide sufficient background in order to make the current research in this very active area of HoTT/UF more accessible to newcomers. The focus of these notes is hence on both the syntactic and semantic aspects of these methods, in particular on cubical type theory and the various cubical set categories that give meaning to these theories.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"15 1\",\"pages\":\"1147-1184\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129521000311\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129521000311","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

近年来,三次方法在同伦型理论和一元基础(HoTT/UF)的发展中发挥了重要作用。这些发展背后的最初动机是给Voevodsky的一价公理以建设性的意义,但从那时起,它们导致了一系列新的结果。这些方法的成果包括设计了新的类型理论和原生支持HoTT/UF概念的证明助手,HoTT/UF的句法和语义一致性结果,以及各种独立性结果,并确立了一价公理不会增加类型论的证明理论强度。本文基于卡内基梅隆大学2019年同伦类型理论暑期学校的课堂笔记。这些讲座的目的是介绍立方体方法,并提供足够的背景资料,以便使新人更容易接触到这个非常活跃的HoTT/UF领域的当前研究。因此,这些笔记的重点是这些方法的句法和语义方面,特别是立方体类型理论和赋予这些理论意义的各种立方体集合类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cubical methods in homotopy type theory and univalent foundations
Cubical methods have played an important role in the development of Homotopy Type Theory and Univalent Foundations (HoTT/UF) in recent years. The original motivation behind these developments was to give constructive meaning to Voevodsky’s univalence axiom, but they have since then led to a range of new results. Among the achievements of these methods is the design of new type theories and proof assistants with native support for notions from HoTT/UF, syntactic and semantic consistency results for HoTT/UF, as well as a variety of independence results and establishing that the univalence axiom does not increase the proof theoretic strength of type theory. This paper is based on lecture notes that were written for the 2019 Homotopy Type Theory Summer School at Carnegie Mellon University. The goal of these lectures was to give an introduction to cubical methods and provide sufficient background in order to make the current research in this very active area of HoTT/UF more accessible to newcomers. The focus of these notes is hence on both the syntactic and semantic aspects of these methods, in particular on cubical type theory and the various cubical set categories that give meaning to these theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信