简单g -配合物与多面体产物表征稳定性

X. Fu, Jelena Grbi'c
{"title":"简单g -配合物与多面体产物表征稳定性","authors":"X. Fu, Jelena Grbi'c","doi":"10.2140/agt.2020.20.215","DOIUrl":null,"url":null,"abstract":"Representation stability in the sense of Church-Farb is concerned with stable properties of representations of sequences of algebraic structures, in particular of groups. We study this notion on objects arising in toric topology. With a simplicial $G$-complex $K$ and a topological pair $(X, A)$, a $G$-polyhedral product $(X, A)^K$ is associated. We show that the homotopy decomposition [1] of $\\Sigma (X, A)^K$ is then $G$-equivariant. In the case of $\\Sigma_m$-polyhedral products, we give criteria on simplicial $\\Sigma_m$-complexes which imply representation stability of $\\Sigma_m$-representations $\\{H_i((X, A)^{K_m})\\}$.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"136 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simplicial G–complexes and representation\\nstability of polyhedral products\",\"authors\":\"X. Fu, Jelena Grbi'c\",\"doi\":\"10.2140/agt.2020.20.215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representation stability in the sense of Church-Farb is concerned with stable properties of representations of sequences of algebraic structures, in particular of groups. We study this notion on objects arising in toric topology. With a simplicial $G$-complex $K$ and a topological pair $(X, A)$, a $G$-polyhedral product $(X, A)^K$ is associated. We show that the homotopy decomposition [1] of $\\\\Sigma (X, A)^K$ is then $G$-equivariant. In the case of $\\\\Sigma_m$-polyhedral products, we give criteria on simplicial $\\\\Sigma_m$-complexes which imply representation stability of $\\\\Sigma_m$-representations $\\\\{H_i((X, A)^{K_m})\\\\}$.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2020.20.215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2020.20.215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Church-Farb意义上的表示稳定性关注代数结构序列,特别是群的表示的稳定性。我们在环面拓扑中产生的对象上研究了这一概念。利用一个简单的$G$-复数$K$和一个拓扑对$(X, a)$,关联了一个$G$-多面体积$(X, a)^K$。我们证明$\Sigma (X, A)^K$的同伦分解[1]是$G$-等变的。在$\Sigma_m$-多面体积的情况下,给出了$\Sigma_m$-配合物的简化判据,表明$\Sigma_m$-表示$\{H_i((X, A)^{K_m})\}$的表示稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplicial G–complexes and representation stability of polyhedral products
Representation stability in the sense of Church-Farb is concerned with stable properties of representations of sequences of algebraic structures, in particular of groups. We study this notion on objects arising in toric topology. With a simplicial $G$-complex $K$ and a topological pair $(X, A)$, a $G$-polyhedral product $(X, A)^K$ is associated. We show that the homotopy decomposition [1] of $\Sigma (X, A)^K$ is then $G$-equivariant. In the case of $\Sigma_m$-polyhedral products, we give criteria on simplicial $\Sigma_m$-complexes which imply representation stability of $\Sigma_m$-representations $\{H_i((X, A)^{K_m})\}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信