Purify:下一代无线电干涉成像的新算法框架

R. Carrillo, J. McEwen, Y. Wiaux
{"title":"Purify:下一代无线电干涉成像的新算法框架","authors":"R. Carrillo, J. McEwen, Y. Wiaux","doi":"10.1109/ICASSP.2014.6854636","DOIUrl":null,"url":null,"abstract":"In recent works, compressed sensing and convex optimization techniques have been applied to radio-interferometric imaging showing the potential to outperform state-of-the-art imaging algorithms in the field. We review our latest contributions, which leverage the versatility of convex optimization to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure, promoted in a new software PURIFY (beta version), relies on the simultaneous-direction method of multipliers (SDMM). The performance of various sparsity priors is evaluated through simulations in the continuous visibility setting, confirming the superiority of our recent average sparsity approach SARA.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"64 1","pages":"5407-5411"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Purify: A new algorithmic framework for next-generation radio-interferometric imaging\",\"authors\":\"R. Carrillo, J. McEwen, Y. Wiaux\",\"doi\":\"10.1109/ICASSP.2014.6854636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent works, compressed sensing and convex optimization techniques have been applied to radio-interferometric imaging showing the potential to outperform state-of-the-art imaging algorithms in the field. We review our latest contributions, which leverage the versatility of convex optimization to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure, promoted in a new software PURIFY (beta version), relies on the simultaneous-direction method of multipliers (SDMM). The performance of various sparsity priors is evaluated through simulations in the continuous visibility setting, confirming the superiority of our recent average sparsity approach SARA.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"64 1\",\"pages\":\"5407-5411\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在最近的工作中,压缩感知和凸优化技术已应用于无线电干涉成像,显示出在该领域超越最先进成像算法的潜力。我们回顾了我们的最新贡献,这些贡献利用凸优化的多功能性来处理现实的连续可见性,并提供高度并行化的结构,为重建和高维数据可扩展性的显著加速铺平了道路。新的算法结构,在新的软件PURIFY (beta版本)中推广,依赖于乘数器的同步方向方法(SDMM)。在连续可视性条件下,通过仿真评估了各种稀疏先验算法的性能,验证了我们提出的平均稀疏先验算法SARA的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Purify: A new algorithmic framework for next-generation radio-interferometric imaging
In recent works, compressed sensing and convex optimization techniques have been applied to radio-interferometric imaging showing the potential to outperform state-of-the-art imaging algorithms in the field. We review our latest contributions, which leverage the versatility of convex optimization to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure, promoted in a new software PURIFY (beta version), relies on the simultaneous-direction method of multipliers (SDMM). The performance of various sparsity priors is evaluated through simulations in the continuous visibility setting, confirming the superiority of our recent average sparsity approach SARA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信