基于LSTM网络的移动机器人运动传感器时间序列预测

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Anete Vagale, Luīze Šteina, Valters Vecins
{"title":"基于LSTM网络的移动机器人运动传感器时间序列预测","authors":"Anete Vagale, Luīze Šteina, Valters Vecins","doi":"10.2478/acss-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract Deep neural networks are a tool for acquiring an approximation of the robot mathematical model without available information about its parameters. This paper compares the LSTM, stacked LSTM and phased LSTM architectures for time series forecasting. In this paper, motion sensor data from mobile robot driving episodes are used as the experimental data. From the experiment, the models show better results for short-term prediction, where the LSTM stacked model slightly outperforms the other two models. Finally, the predicted and actual trajectories of the robot are compared.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"2 1","pages":"150 - 157"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Time Series Forecasting of Mobile Robot Motion Sensors Using LSTM Networks\",\"authors\":\"Anete Vagale, Luīze Šteina, Valters Vecins\",\"doi\":\"10.2478/acss-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Deep neural networks are a tool for acquiring an approximation of the robot mathematical model without available information about its parameters. This paper compares the LSTM, stacked LSTM and phased LSTM architectures for time series forecasting. In this paper, motion sensor data from mobile robot driving episodes are used as the experimental data. From the experiment, the models show better results for short-term prediction, where the LSTM stacked model slightly outperforms the other two models. Finally, the predicted and actual trajectories of the robot are compared.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"2 1\",\"pages\":\"150 - 157\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2021-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2021-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

摘要

摘要深度神经网络是一种在没有可用参数信息的情况下获取机器人数学模型近似值的工具。本文比较了LSTM、堆叠LSTM和阶段LSTM三种时间序列预测方法。本文采用移动机器人驾驶场景的运动传感器数据作为实验数据。从实验来看,模型在短期预测方面表现出较好的效果,其中LSTM叠加模型略优于其他两种模型。最后,对机器人的预测轨迹和实际轨迹进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Series Forecasting of Mobile Robot Motion Sensors Using LSTM Networks
Abstract Deep neural networks are a tool for acquiring an approximation of the robot mathematical model without available information about its parameters. This paper compares the LSTM, stacked LSTM and phased LSTM architectures for time series forecasting. In this paper, motion sensor data from mobile robot driving episodes are used as the experimental data. From the experiment, the models show better results for short-term prediction, where the LSTM stacked model slightly outperforms the other two models. Finally, the predicted and actual trajectories of the robot are compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信