单观测连续上下文仿真优化中收缩球法与最优大偏差率估计的混合

Xiao Jin, Yichi Shen, L. Lee, E. P. Chew, C. Shoemaker
{"title":"单观测连续上下文仿真优化中收缩球法与最优大偏差率估计的混合","authors":"Xiao Jin, Yichi Shen, L. Lee, E. P. Chew, C. Shoemaker","doi":"10.1109/WSC48552.2020.9384019","DOIUrl":null,"url":null,"abstract":"We propose a new method for solving continuous contextual simulation optimization with a single observation. By adopting the estimation on the large deviation rate in the contextual ranking and selection problem, we transfer the old theorem to the continuous setting using a shrinking ball inspired construct. Through the estimation of the rate, the new method is expected to achieve the optimal performance in this new problem setting. Brief numerical experiments are conducted and show significant advantages of our method against the uniform sampling scheme.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"1 1","pages":"2996-3007"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid of Shrinking Ball Method and Optimal Large Deviation Rate Estimation in Continuous Contextual Simulation Optimization with Single Observation\",\"authors\":\"Xiao Jin, Yichi Shen, L. Lee, E. P. Chew, C. Shoemaker\",\"doi\":\"10.1109/WSC48552.2020.9384019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method for solving continuous contextual simulation optimization with a single observation. By adopting the estimation on the large deviation rate in the contextual ranking and selection problem, we transfer the old theorem to the continuous setting using a shrinking ball inspired construct. Through the estimation of the rate, the new method is expected to achieve the optimal performance in this new problem setting. Brief numerical experiments are conducted and show significant advantages of our method against the uniform sampling scheme.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"1 1\",\"pages\":\"2996-3007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9384019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9384019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种求解单次观测连续上下文模拟优化的新方法。通过在上下文排序和选择问题中采用对大偏差率的估计,利用收缩球启发构造将旧定理转移到连续设置中。通过对速率的估计,期望新方法在新问题集中达到最优性能。简要的数值实验表明,该方法相对于均匀采样方案具有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid of Shrinking Ball Method and Optimal Large Deviation Rate Estimation in Continuous Contextual Simulation Optimization with Single Observation
We propose a new method for solving continuous contextual simulation optimization with a single observation. By adopting the estimation on the large deviation rate in the contextual ranking and selection problem, we transfer the old theorem to the continuous setting using a shrinking ball inspired construct. Through the estimation of the rate, the new method is expected to achieve the optimal performance in this new problem setting. Brief numerical experiments are conducted and show significant advantages of our method against the uniform sampling scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信