{"title":"基于刺突糖蛋白保守序列的新型SARS-CoV-2多表位亚单位疫苗的免疫信息学设计","authors":"I. Ekaidem, A. Moses, Y. Tatfeng","doi":"10.11648/J.IJI.20200803.12","DOIUrl":null,"url":null,"abstract":"Sars-CoV-2 infection also called COVID-19 is characterized by fever and signs of acute respiratory distress syndrome (ARDS). It is currently a global pandemic with high mortality rate in those with severe disease. Lack of effective vaccine and approved drug for treatment created a disastrous condition among the global communities. This study was designed as a step ahead in the path of protein-based subunit vaccine development. The primary amino acid sequence of SARS-CoV-2 spike glycoprotein was used to design a protein subunit vaccine construct. The molecular weight of vaccine protein was 58.4 kDa with a total number of 8170 atoms and 584 amino acid residues. The theoretical pI was found to be 8.54 showing its slightly basic nature while the total number of negative and positive charged residues were 29 and 33 respectively. The peptide vaccine construct has 147 (25.17%) polar residues and 375 (64.21%) hydrophobic residues. The vaccine construct has cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell epitopes of varying lengths having great potential to stimulate high levels of IFN-γ production. It has potent antigenic properties but lacked allergenicity. It is stable and have a good binding affinity for the TLR-4 receptor. In general, this modelling applied a series of immunoinformatics tools in a sequential manner to find an effective vaccine that may be used effectively in fighting against the COVID-19 pandemic. This modelling, however, needs real life experimental validation to prove the workability of the computational work.","PeriodicalId":92912,"journal":{"name":"International journal of immunology and immunotherapy","volume":"67 1","pages":"42"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Immunoinformatics Design of Novel Multi-Epitope Subunit Vaccine for SARS-CoV-2 by Exploring Virus Conserved Sequences of the Spike Glycoproteins\",\"authors\":\"I. Ekaidem, A. Moses, Y. Tatfeng\",\"doi\":\"10.11648/J.IJI.20200803.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sars-CoV-2 infection also called COVID-19 is characterized by fever and signs of acute respiratory distress syndrome (ARDS). It is currently a global pandemic with high mortality rate in those with severe disease. Lack of effective vaccine and approved drug for treatment created a disastrous condition among the global communities. This study was designed as a step ahead in the path of protein-based subunit vaccine development. The primary amino acid sequence of SARS-CoV-2 spike glycoprotein was used to design a protein subunit vaccine construct. The molecular weight of vaccine protein was 58.4 kDa with a total number of 8170 atoms and 584 amino acid residues. The theoretical pI was found to be 8.54 showing its slightly basic nature while the total number of negative and positive charged residues were 29 and 33 respectively. The peptide vaccine construct has 147 (25.17%) polar residues and 375 (64.21%) hydrophobic residues. The vaccine construct has cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell epitopes of varying lengths having great potential to stimulate high levels of IFN-γ production. It has potent antigenic properties but lacked allergenicity. It is stable and have a good binding affinity for the TLR-4 receptor. In general, this modelling applied a series of immunoinformatics tools in a sequential manner to find an effective vaccine that may be used effectively in fighting against the COVID-19 pandemic. This modelling, however, needs real life experimental validation to prove the workability of the computational work.\",\"PeriodicalId\":92912,\"journal\":{\"name\":\"International journal of immunology and immunotherapy\",\"volume\":\"67 1\",\"pages\":\"42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of immunology and immunotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJI.20200803.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of immunology and immunotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJI.20200803.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Immunoinformatics Design of Novel Multi-Epitope Subunit Vaccine for SARS-CoV-2 by Exploring Virus Conserved Sequences of the Spike Glycoproteins
Sars-CoV-2 infection also called COVID-19 is characterized by fever and signs of acute respiratory distress syndrome (ARDS). It is currently a global pandemic with high mortality rate in those with severe disease. Lack of effective vaccine and approved drug for treatment created a disastrous condition among the global communities. This study was designed as a step ahead in the path of protein-based subunit vaccine development. The primary amino acid sequence of SARS-CoV-2 spike glycoprotein was used to design a protein subunit vaccine construct. The molecular weight of vaccine protein was 58.4 kDa with a total number of 8170 atoms and 584 amino acid residues. The theoretical pI was found to be 8.54 showing its slightly basic nature while the total number of negative and positive charged residues were 29 and 33 respectively. The peptide vaccine construct has 147 (25.17%) polar residues and 375 (64.21%) hydrophobic residues. The vaccine construct has cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell epitopes of varying lengths having great potential to stimulate high levels of IFN-γ production. It has potent antigenic properties but lacked allergenicity. It is stable and have a good binding affinity for the TLR-4 receptor. In general, this modelling applied a series of immunoinformatics tools in a sequential manner to find an effective vaccine that may be used effectively in fighting against the COVID-19 pandemic. This modelling, however, needs real life experimental validation to prove the workability of the computational work.