{"title":"半导体纳米材料在癌症治疗中的应用","authors":"Mehrnaz Asadi, Mahsa Alizadeh","doi":"10.35248/2157-7439.21.9.563","DOIUrl":null,"url":null,"abstract":"Cancer theranostics, which aims to integrate diagnostics and therapy for cancer treatment, has benefited greatly from recent advancements in nanomaterials. This study focuses on the most recent advancements in cancer theranostic techniques using quantum dots, silica nanoparticles, and carbon-based nanomaterials. Over the last decade, responsive nanocarriers made from these nanomaterials have shown promise in cancer-specific theranostics. Several experiments in cell and mouse models have suggested their underlying therapeutic efficacy; however, comprehensive and long-term in vivo clinical evaluations are undoubtedly expected to make these bench-made materials compatible in real-world settings.","PeriodicalId":16532,"journal":{"name":"Journal of Nanomedicine & Nanotechnology","volume":"1 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of semiconductor nanomaterials in cancer theranostics\",\"authors\":\"Mehrnaz Asadi, Mahsa Alizadeh\",\"doi\":\"10.35248/2157-7439.21.9.563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer theranostics, which aims to integrate diagnostics and therapy for cancer treatment, has benefited greatly from recent advancements in nanomaterials. This study focuses on the most recent advancements in cancer theranostic techniques using quantum dots, silica nanoparticles, and carbon-based nanomaterials. Over the last decade, responsive nanocarriers made from these nanomaterials have shown promise in cancer-specific theranostics. Several experiments in cell and mouse models have suggested their underlying therapeutic efficacy; however, comprehensive and long-term in vivo clinical evaluations are undoubtedly expected to make these bench-made materials compatible in real-world settings.\",\"PeriodicalId\":16532,\"journal\":{\"name\":\"Journal of Nanomedicine & Nanotechnology\",\"volume\":\"1 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomedicine & Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35248/2157-7439.21.9.563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomedicine & Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35248/2157-7439.21.9.563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of semiconductor nanomaterials in cancer theranostics
Cancer theranostics, which aims to integrate diagnostics and therapy for cancer treatment, has benefited greatly from recent advancements in nanomaterials. This study focuses on the most recent advancements in cancer theranostic techniques using quantum dots, silica nanoparticles, and carbon-based nanomaterials. Over the last decade, responsive nanocarriers made from these nanomaterials have shown promise in cancer-specific theranostics. Several experiments in cell and mouse models have suggested their underlying therapeutic efficacy; however, comprehensive and long-term in vivo clinical evaluations are undoubtedly expected to make these bench-made materials compatible in real-world settings.