在CAT(0)空间上用离散凸优化计算nc秩

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Masaki Hamada, H. Hirai
{"title":"在CAT(0)空间上用离散凸优化计算nc秩","authors":"Masaki Hamada, H. Hirai","doi":"10.1137/20m138836x","DOIUrl":null,"url":null,"abstract":"In this paper, we address the noncommutative rank (nc-rank) computation of a linear symbolic matrix A = A1x1 + A2x2 + · · ·+ Amxm, where each Ai is an n × n matrix over a field K, and xi (i = 1, 2, . . . ,m) are noncommutative variables. For this problem, polynomial time algorithms were given by Garg, Gurvits, Oliveira, and Wigderson for K = Q, and by Ivanyos, Qiao, and Subrahmanyam for an arbitrary field K. We present a significantly different polynomial time algorithm that works on an arbitrary field K. Our algorithm is based on a combination of submodular optimization on modular lattices and convex optimization on CAT(0) spaces.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Computing the nc-Rank via Discrete Convex Optimization on CAT(0) Spaces\",\"authors\":\"Masaki Hamada, H. Hirai\",\"doi\":\"10.1137/20m138836x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the noncommutative rank (nc-rank) computation of a linear symbolic matrix A = A1x1 + A2x2 + · · ·+ Amxm, where each Ai is an n × n matrix over a field K, and xi (i = 1, 2, . . . ,m) are noncommutative variables. For this problem, polynomial time algorithms were given by Garg, Gurvits, Oliveira, and Wigderson for K = Q, and by Ivanyos, Qiao, and Subrahmanyam for an arbitrary field K. We present a significantly different polynomial time algorithm that works on an arbitrary field K. Our algorithm is based on a combination of submodular optimization on modular lattices and convex optimization on CAT(0) spaces.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/20m138836x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m138836x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 15

摘要

本文讨论了线性符号矩阵a = A1x1 + A2x2 +···+ Amxm的非交换秩(nc-rank)计算,其中每个Ai是域K上的n × n矩阵,xi (i = 1,2,…),m)为非交换变量。对于这个问题,Garg, Gurvits, Oliveira和Wigderson给出了K = Q的多项式时间算法,Ivanyos, Qiao和Subrahmanyam给出了任意域K的多项式时间算法。我们提出了一个明显不同的多项式时间算法,适用于任意域K。我们的算法基于模格上的次模优化和CAT(0)空间上的凸优化的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the nc-Rank via Discrete Convex Optimization on CAT(0) Spaces
In this paper, we address the noncommutative rank (nc-rank) computation of a linear symbolic matrix A = A1x1 + A2x2 + · · ·+ Amxm, where each Ai is an n × n matrix over a field K, and xi (i = 1, 2, . . . ,m) are noncommutative variables. For this problem, polynomial time algorithms were given by Garg, Gurvits, Oliveira, and Wigderson for K = Q, and by Ivanyos, Qiao, and Subrahmanyam for an arbitrary field K. We present a significantly different polynomial time algorithm that works on an arbitrary field K. Our algorithm is based on a combination of submodular optimization on modular lattices and convex optimization on CAT(0) spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信