{"title":"甲苯与甲醇侧链烷基化反应及其沸石催化剂的改性和失活","authors":"Y. Voloshyna, O. Pertko","doi":"10.15407/kataliz2021.31.017","DOIUrl":null,"url":null,"abstract":"The review deals with main aspects of the toluene methylation reaction on basic catalysts. The side reactions of decomposition of methanol to CO and H2 on strong basic sites and ring alkylation of toluene on Lewis acid sites (cations of high polarizing ability) hinder obtaining high yields of the target products – styrene and ethylbenzene. Both types of sites are necessary for the course of the target reaction. So optimizing their strength and quantity is an important prerequisite for the selectivity of the side-chain alkylation catalysts. The advantage of fojasite-based systems for this reaction was confirmed by the works of many researchers. However, the possibilities of use of zeolites of other structural types and representatives of a new generation of molecular sieves are being studied, as well as ways of modifying such materials to increase their catalytic efficiency. The main direction of modification is to regulate the balance of acidity and basicity. Effective charge of framework oxygen atoms, which determines basicity of zeolite framework, increases due to the introduction of guest compounds into the catalyst, and this effect is more significant than influence on basicity of ion exchange for cations of elements of low electronegativity. However, the role of this method of modifying in increasing the selectivity remains crucial due to potentiality to decrease the Lewis acidity of cations. Compounds of other elements and transition metals also are used for modification, as well as promotion with metallic copper and silver. Techniques are applied, but not widely, to deprive the external surface of crystallites of active sites. This method of modification is effective for slowing down their deactivation by coke. Acid sites, in particular BAS, are most often distinguished among the sites responsible for coke formation. The mechanism of coke formation in the absence of such centers is also proposed. On the whole, this issue not fully disclosed and requires a deeper study.","PeriodicalId":9649,"journal":{"name":"Catalysis and Petrochemistry","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Side-chain Alkylation of Toluene with Methanol, Modification and Deactivation of Zeolite Catalysts of the Reaction\",\"authors\":\"Y. Voloshyna, O. Pertko\",\"doi\":\"10.15407/kataliz2021.31.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The review deals with main aspects of the toluene methylation reaction on basic catalysts. The side reactions of decomposition of methanol to CO and H2 on strong basic sites and ring alkylation of toluene on Lewis acid sites (cations of high polarizing ability) hinder obtaining high yields of the target products – styrene and ethylbenzene. Both types of sites are necessary for the course of the target reaction. So optimizing their strength and quantity is an important prerequisite for the selectivity of the side-chain alkylation catalysts. The advantage of fojasite-based systems for this reaction was confirmed by the works of many researchers. However, the possibilities of use of zeolites of other structural types and representatives of a new generation of molecular sieves are being studied, as well as ways of modifying such materials to increase their catalytic efficiency. The main direction of modification is to regulate the balance of acidity and basicity. Effective charge of framework oxygen atoms, which determines basicity of zeolite framework, increases due to the introduction of guest compounds into the catalyst, and this effect is more significant than influence on basicity of ion exchange for cations of elements of low electronegativity. However, the role of this method of modifying in increasing the selectivity remains crucial due to potentiality to decrease the Lewis acidity of cations. Compounds of other elements and transition metals also are used for modification, as well as promotion with metallic copper and silver. Techniques are applied, but not widely, to deprive the external surface of crystallites of active sites. This method of modification is effective for slowing down their deactivation by coke. Acid sites, in particular BAS, are most often distinguished among the sites responsible for coke formation. The mechanism of coke formation in the absence of such centers is also proposed. On the whole, this issue not fully disclosed and requires a deeper study.\",\"PeriodicalId\":9649,\"journal\":{\"name\":\"Catalysis and Petrochemistry\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis and Petrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/kataliz2021.31.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis and Petrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/kataliz2021.31.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Side-chain Alkylation of Toluene with Methanol, Modification and Deactivation of Zeolite Catalysts of the Reaction
The review deals with main aspects of the toluene methylation reaction on basic catalysts. The side reactions of decomposition of methanol to CO and H2 on strong basic sites and ring alkylation of toluene on Lewis acid sites (cations of high polarizing ability) hinder obtaining high yields of the target products – styrene and ethylbenzene. Both types of sites are necessary for the course of the target reaction. So optimizing their strength and quantity is an important prerequisite for the selectivity of the side-chain alkylation catalysts. The advantage of fojasite-based systems for this reaction was confirmed by the works of many researchers. However, the possibilities of use of zeolites of other structural types and representatives of a new generation of molecular sieves are being studied, as well as ways of modifying such materials to increase their catalytic efficiency. The main direction of modification is to regulate the balance of acidity and basicity. Effective charge of framework oxygen atoms, which determines basicity of zeolite framework, increases due to the introduction of guest compounds into the catalyst, and this effect is more significant than influence on basicity of ion exchange for cations of elements of low electronegativity. However, the role of this method of modifying in increasing the selectivity remains crucial due to potentiality to decrease the Lewis acidity of cations. Compounds of other elements and transition metals also are used for modification, as well as promotion with metallic copper and silver. Techniques are applied, but not widely, to deprive the external surface of crystallites of active sites. This method of modification is effective for slowing down their deactivation by coke. Acid sites, in particular BAS, are most often distinguished among the sites responsible for coke formation. The mechanism of coke formation in the absence of such centers is also proposed. On the whole, this issue not fully disclosed and requires a deeper study.