与z2等变奇点相关的子模的z2等变标准基

M. Gazor, Mahsa Kazemi
{"title":"与z2等变奇点相关的子模的z2等变标准基","authors":"M. Gazor, Mahsa Kazemi","doi":"10.1145/3055282.3055293","DOIUrl":null,"url":null,"abstract":"Let <i>x</i> = (<i>x</i><sub>1</sub>,...,<i>x</i><sub><i>n</i></sub>) ∈ R <sup><i>n</i></sup> and λ ∈ R. A smooth map <i>f</i>(<i>x</i>,λ) is called <i>Z</i><sub>2</sub>-equivariant (<i>Z</i><sub>2</sub>-invariant) if <i>f</i>(−<i>x</i>, λ) = −<i>f</i>(<i>x</i>,λ) (<i>f</i>(−<i>x</i>, λ) = <i>f</i>(<i>x</i>,λ)). Consider the local solutions of a <i>Z</i><sub>2</sub>-equivariant map <i>f</i>(<i>x</i>,λ) = 0 around a solution, say <i>f</i>(<i>x</i><sub>0</sub>,λ<sub>0</sub>), as the parameters smoothly vary. The solution set may experience a surprising behavior like observing changes in the number of solutions. Each of such problems/changes is called a singularity/bifurcation. Since our analysis is about local solutions, we call any two smooth map <i>f</i>(<i>x</i>,λ) and <i>g</i>(<i>x</i>,λ) as germ-equivalent when they are identical on a neighborhood of (<i>x</i><sub>0</sub>,λ<sub>0</sub>) = (0,0). Each germ equivalent class is referred to a smooth germ. The space of all smooth <i>Z</i><sub>2</sub>-equivariant germs is denoted by [EQUATION] and space of all smooth <i>Z</i><sub>2</sub>-invariant germs is denoted by [EQUATION]<sub><i>x</i>,λ</sub>(<i>Z</i><sub>2</sub>). The space [EQUATION] is a module over the ring of <i>Z</i><sub>2</sub>-invariant germs [EQUATION]<sub><i>x</i>,λ</sub>(<i>Z</i><sub>2</sub>); see [3, 2, 7] for more information and the origins of our notations.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"1 1","pages":"170-172"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Z2-equivariant standard bases for submodules associated with Z2-equivariant singularities\",\"authors\":\"M. Gazor, Mahsa Kazemi\",\"doi\":\"10.1145/3055282.3055293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>x</i> = (<i>x</i><sub>1</sub>,...,<i>x</i><sub><i>n</i></sub>) ∈ R <sup><i>n</i></sup> and λ ∈ R. A smooth map <i>f</i>(<i>x</i>,λ) is called <i>Z</i><sub>2</sub>-equivariant (<i>Z</i><sub>2</sub>-invariant) if <i>f</i>(−<i>x</i>, λ) = −<i>f</i>(<i>x</i>,λ) (<i>f</i>(−<i>x</i>, λ) = <i>f</i>(<i>x</i>,λ)). Consider the local solutions of a <i>Z</i><sub>2</sub>-equivariant map <i>f</i>(<i>x</i>,λ) = 0 around a solution, say <i>f</i>(<i>x</i><sub>0</sub>,λ<sub>0</sub>), as the parameters smoothly vary. The solution set may experience a surprising behavior like observing changes in the number of solutions. Each of such problems/changes is called a singularity/bifurcation. Since our analysis is about local solutions, we call any two smooth map <i>f</i>(<i>x</i>,λ) and <i>g</i>(<i>x</i>,λ) as germ-equivalent when they are identical on a neighborhood of (<i>x</i><sub>0</sub>,λ<sub>0</sub>) = (0,0). Each germ equivalent class is referred to a smooth germ. The space of all smooth <i>Z</i><sub>2</sub>-equivariant germs is denoted by [EQUATION] and space of all smooth <i>Z</i><sub>2</sub>-invariant germs is denoted by [EQUATION]<sub><i>x</i>,λ</sub>(<i>Z</i><sub>2</sub>). The space [EQUATION] is a module over the ring of <i>Z</i><sub>2</sub>-invariant germs [EQUATION]<sub><i>x</i>,λ</sub>(<i>Z</i><sub>2</sub>); see [3, 2, 7] for more information and the origins of our notations.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"1 1\",\"pages\":\"170-172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055282.3055293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055282.3055293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

让x = (x1,…,xn)∈R n和λ∈R .光滑映射f (x,λ)Z2-equivariant (Z2-invariant)如果(−x,λ)=−f (x,λ)(f(−x,λ)= f (x,λ))。考虑一个z2等变映射f(x,λ) = 0围绕一个解的局部解,比如f(x0,λ),当参数平滑变化时。解决方案集可能会遇到令人惊讶的行为,比如观察到解决方案数量的变化。每一个这样的问题/变化被称为一个奇点/分叉。由于我们的分析是关于局部解的,当任意两个光滑映射f(x,λ)和g(x,λ)在(x0,λ) =(0,0)的邻域上相同时,我们称它们为细菌等价。每个胚芽等效类称为光滑胚芽。所有光滑Z2-等变胚芽的空间记为[EQUATION],所有光滑Z2-不变胚芽的空间记为[EQUATION]x,λ(Z2)。空间[EQUATION]是Z2不变胚环上的模[EQUATION]x,λ(Z2);参见[3,2,7]了解更多信息和我们符号的起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Z2-equivariant standard bases for submodules associated with Z2-equivariant singularities
Let x = (x1,...,xn) ∈ R n and λ ∈ R. A smooth map f(x,λ) is called Z2-equivariant (Z2-invariant) if f(−x, λ) = −f(x,λ) (f(−x, λ) = f(x,λ)). Consider the local solutions of a Z2-equivariant map f(x,λ) = 0 around a solution, say f(x00), as the parameters smoothly vary. The solution set may experience a surprising behavior like observing changes in the number of solutions. Each of such problems/changes is called a singularity/bifurcation. Since our analysis is about local solutions, we call any two smooth map f(x,λ) and g(x,λ) as germ-equivalent when they are identical on a neighborhood of (x00) = (0,0). Each germ equivalent class is referred to a smooth germ. The space of all smooth Z2-equivariant germs is denoted by [EQUATION] and space of all smooth Z2-invariant germs is denoted by [EQUATION]x(Z2). The space [EQUATION] is a module over the ring of Z2-invariant germs [EQUATION]x(Z2); see [3, 2, 7] for more information and the origins of our notations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信