{"title":"基于随机模型和概率决策的数字乳房x线肿块检测分类器","authors":"Huai Li, K. J. Liu, S. Lo, Y. Wang","doi":"10.1109/ICIP.1997.632177","DOIUrl":null,"url":null,"abstract":"We have developed a combined method utilizing morphological operations, a finite generalized Gaussian mixture (FGGM) modeling, and a contextual Bayesian relaxation labeling technique (CBRL) to enhance and extract suspicious masses. A feature space is constructed based on multiple feature extraction from the regions of interest (ROIs). Finally, a multi-modular probabilistic decision-based classifier is employed to distinguish true masses from non-masses.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"40 1","pages":"539-542 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stochastic model and probabilistic decision-based classifier for mass detection in digital mammography\",\"authors\":\"Huai Li, K. J. Liu, S. Lo, Y. Wang\",\"doi\":\"10.1109/ICIP.1997.632177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a combined method utilizing morphological operations, a finite generalized Gaussian mixture (FGGM) modeling, and a contextual Bayesian relaxation labeling technique (CBRL) to enhance and extract suspicious masses. A feature space is constructed based on multiple feature extraction from the regions of interest (ROIs). Finally, a multi-modular probabilistic decision-based classifier is employed to distinguish true masses from non-masses.\",\"PeriodicalId\":92344,\"journal\":{\"name\":\"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing\",\"volume\":\"40 1\",\"pages\":\"539-542 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1997.632177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.632177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic model and probabilistic decision-based classifier for mass detection in digital mammography
We have developed a combined method utilizing morphological operations, a finite generalized Gaussian mixture (FGGM) modeling, and a contextual Bayesian relaxation labeling technique (CBRL) to enhance and extract suspicious masses. A feature space is constructed based on multiple feature extraction from the regions of interest (ROIs). Finally, a multi-modular probabilistic decision-based classifier is employed to distinguish true masses from non-masses.