关于定义分数阶导数的反常积分的收敛型

IF 0.3 Q4 MATHEMATICS
B. Kalam, G. Vainikko
{"title":"关于定义分数阶导数的反常积分的收敛型","authors":"B. Kalam, G. Vainikko","doi":"10.12697/ACUTM.2019.23.10","DOIUrl":null,"url":null,"abstract":"This article continues the analysis of the class of fractionally differentiable functions. We complete the main result of [4] that characterises the class of fractionally differentiable functions in terms of the pointwise convergence of certain improper integrals containing these functions. Our aim is to present an example, which shows that in order to obtain all fractionally differentiable functions, one may not replace the conditional convergence of those integrals by their absolute convergence.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"45 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the convergence type of improper integrals defining fractional derivatives\",\"authors\":\"B. Kalam, G. Vainikko\",\"doi\":\"10.12697/ACUTM.2019.23.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article continues the analysis of the class of fractionally differentiable functions. We complete the main result of [4] that characterises the class of fractionally differentiable functions in terms of the pointwise convergence of certain improper integrals containing these functions. Our aim is to present an example, which shows that in order to obtain all fractionally differentiable functions, one may not replace the conditional convergence of those integrals by their absolute convergence.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2019.23.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2019.23.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文继续分析一类分数可微函数。我们完成了[4]的主要结果,即用包含这些函数的某些反常积分的点向收敛性来表征分数可微函数的类别。我们的目的是给出一个例子,表明为了得到所有分数可微函数,我们不能用分数可微函数的绝对收敛来代替分数可微函数的条件收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About the convergence type of improper integrals defining fractional derivatives
This article continues the analysis of the class of fractionally differentiable functions. We complete the main result of [4] that characterises the class of fractionally differentiable functions in terms of the pointwise convergence of certain improper integrals containing these functions. Our aim is to present an example, which shows that in order to obtain all fractionally differentiable functions, one may not replace the conditional convergence of those integrals by their absolute convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信