{"title":"收敛阶跃式磁力流体密封的正交优化设计与有限元分析","authors":"Fuxiang Hao, An-le Mu","doi":"10.4283/jmag.2022.27.2.164","DOIUrl":null,"url":null,"abstract":"In order to better solve the problem of air leakage during compressor operation, based on the converging stepped magnetic fluid seal structure, the L 16 (4 4 ) orthogonal test design and the numerical simulation of the finite element method are combined to optimize the sealing structure. Four factors, four levels and the corresponding orthogonal table are selected in this paper. The simulation results of each test are calculated and range values are studied. Finally, sealing pressure capability of the structure before and after optimization are calculated and compared. The results show that under the conditions of different axial and radial sealing gaps, the sealing pressure capability of converging stepped magnetic fluid seal structure has been significantly improved after orthogonal optimization, especially when the radial sealing gap is relatively small. The maximum pressure capability can be improved by about 11 %, which fully proves the effectiveness of orthogonal optimization. At the same time, the research results can also provide references for the application of other rotary sealing conditions.","PeriodicalId":16147,"journal":{"name":"Journal of Magnetics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Orthogonal Optimization Design and Finite Element Analysis of Converging Stepped Magnetic Fluid Seal\",\"authors\":\"Fuxiang Hao, An-le Mu\",\"doi\":\"10.4283/jmag.2022.27.2.164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to better solve the problem of air leakage during compressor operation, based on the converging stepped magnetic fluid seal structure, the L 16 (4 4 ) orthogonal test design and the numerical simulation of the finite element method are combined to optimize the sealing structure. Four factors, four levels and the corresponding orthogonal table are selected in this paper. The simulation results of each test are calculated and range values are studied. Finally, sealing pressure capability of the structure before and after optimization are calculated and compared. The results show that under the conditions of different axial and radial sealing gaps, the sealing pressure capability of converging stepped magnetic fluid seal structure has been significantly improved after orthogonal optimization, especially when the radial sealing gap is relatively small. The maximum pressure capability can be improved by about 11 %, which fully proves the effectiveness of orthogonal optimization. At the same time, the research results can also provide references for the application of other rotary sealing conditions.\",\"PeriodicalId\":16147,\"journal\":{\"name\":\"Journal of Magnetics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4283/jmag.2022.27.2.164\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4283/jmag.2022.27.2.164","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Orthogonal Optimization Design and Finite Element Analysis of Converging Stepped Magnetic Fluid Seal
In order to better solve the problem of air leakage during compressor operation, based on the converging stepped magnetic fluid seal structure, the L 16 (4 4 ) orthogonal test design and the numerical simulation of the finite element method are combined to optimize the sealing structure. Four factors, four levels and the corresponding orthogonal table are selected in this paper. The simulation results of each test are calculated and range values are studied. Finally, sealing pressure capability of the structure before and after optimization are calculated and compared. The results show that under the conditions of different axial and radial sealing gaps, the sealing pressure capability of converging stepped magnetic fluid seal structure has been significantly improved after orthogonal optimization, especially when the radial sealing gap is relatively small. The maximum pressure capability can be improved by about 11 %, which fully proves the effectiveness of orthogonal optimization. At the same time, the research results can also provide references for the application of other rotary sealing conditions.
期刊介绍:
The JOURNAL OF MAGNETICS provides a forum for the discussion of original papers covering the magnetic theory, magnetic materials and their properties, magnetic recording materials and technology, spin electronics, and measurements and applications. The journal covers research papers, review letters, and notes.