早期检测痴呆相关躁动的运动生物标志物

Ridwan Alam, Jiaqi Gong, M. Hanson, Azziza Bankole, M. Anderson, T. Smith-Jackson, J. Lach
{"title":"早期检测痴呆相关躁动的运动生物标志物","authors":"Ridwan Alam, Jiaqi Gong, M. Hanson, Azziza Bankole, M. Anderson, T. Smith-Jackson, J. Lach","doi":"10.1145/3089341.3089344","DOIUrl":null,"url":null,"abstract":"Agitation in dementia poses a major health risk for both the patients and their caregivers and induces a huge caregiving burden. Early detection of agitation can facilitate timely intervention and prevent escalation of critical episodes. Sensing behavioral patterns for detecting health critical events is a challenging task. Wearable sensors are often employed for sensing physiological signals, but extracting possible biomarkers for confident detection of early agitation is still an open research. In this paper, we employ an ongoing iterative study to explore the motion biomarkers related to agitation in community-dwelling persons with dementia (PWD). This study uses accelerometers in smart watches to capture PWD behavioral patterns unobtrusively. Analysis of the feature space is performed using data from multiple subjects to discriminate among epochs of onset, preset, and offset of agitation while considering inter-person variability in real deployments. This paper shows the prospect of feature space analysis of the motion data for developing early agitation detection models to deploy in the wild.","PeriodicalId":92197,"journal":{"name":"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Motion Biomarkers for Early Detection of Dementia-Related Agitation\",\"authors\":\"Ridwan Alam, Jiaqi Gong, M. Hanson, Azziza Bankole, M. Anderson, T. Smith-Jackson, J. Lach\",\"doi\":\"10.1145/3089341.3089344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agitation in dementia poses a major health risk for both the patients and their caregivers and induces a huge caregiving burden. Early detection of agitation can facilitate timely intervention and prevent escalation of critical episodes. Sensing behavioral patterns for detecting health critical events is a challenging task. Wearable sensors are often employed for sensing physiological signals, but extracting possible biomarkers for confident detection of early agitation is still an open research. In this paper, we employ an ongoing iterative study to explore the motion biomarkers related to agitation in community-dwelling persons with dementia (PWD). This study uses accelerometers in smart watches to capture PWD behavioral patterns unobtrusively. Analysis of the feature space is performed using data from multiple subjects to discriminate among epochs of onset, preset, and offset of agitation while considering inter-person variability in real deployments. This paper shows the prospect of feature space analysis of the motion data for developing early agitation detection models to deploy in the wild.\",\"PeriodicalId\":92197,\"journal\":{\"name\":\"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3089341.3089344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3089341.3089344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

痴呆患者的躁动对患者及其护理人员都构成重大健康风险,并造成巨大的护理负担。早期发现躁动有助于及时干预并防止严重发作的升级。感知行为模式以检测健康关键事件是一项具有挑战性的任务。可穿戴传感器通常用于感知生理信号,但提取可能的生物标志物以可靠地检测早期躁动仍然是一个开放的研究。在本文中,我们采用一项正在进行的迭代研究来探索社区居住的痴呆症患者(PWD)中与躁动相关的运动生物标志物。这项研究使用智能手表上的加速度计,以不显眼的方式捕捉残疾人士的行为模式。使用来自多个受试者的数据进行特征空间分析,以区分发作,预设和偏移的时间,同时考虑到实际部署中的人与人之间的可变性。本文展示了运动数据的特征空间分析的前景,用于开发早期搅拌检测模型以部署在野外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Biomarkers for Early Detection of Dementia-Related Agitation
Agitation in dementia poses a major health risk for both the patients and their caregivers and induces a huge caregiving burden. Early detection of agitation can facilitate timely intervention and prevent escalation of critical episodes. Sensing behavioral patterns for detecting health critical events is a challenging task. Wearable sensors are often employed for sensing physiological signals, but extracting possible biomarkers for confident detection of early agitation is still an open research. In this paper, we employ an ongoing iterative study to explore the motion biomarkers related to agitation in community-dwelling persons with dementia (PWD). This study uses accelerometers in smart watches to capture PWD behavioral patterns unobtrusively. Analysis of the feature space is performed using data from multiple subjects to discriminate among epochs of onset, preset, and offset of agitation while considering inter-person variability in real deployments. This paper shows the prospect of feature space analysis of the motion data for developing early agitation detection models to deploy in the wild.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信