Yeonock Oh , Yoon Kyung Choi , Inyeol Yun, Eungyeong Lee, Kyungwoo Kim, Mahn-Joo Kim
{"title":"葡萄糖头表面活性剂处理的脂蛋白脂肪酶在有机溶剂中的近似水活性","authors":"Yeonock Oh , Yoon Kyung Choi , Inyeol Yun, Eungyeong Lee, Kyungwoo Kim, Mahn-Joo Kim","doi":"10.1016/j.molcatb.2016.10.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we explored the activation of a lipoprotein lipase from <em>Burkholderia species</em> by glucose-headed surfactants (GHSs) for enhancing its catalytic activity in organic solvent. Three GHSs were prepared and then tested as the additives for inducing the activation of lipoprotein lipase. The kinetic parameters of GHS-treated lipoprotein lipase were determined for the hydrolysis or alcoholysis of <em>p</em>-nitrophenyl acetate. It was found that GHS-treated lipoprotein lipase was 4 to 5 orders of magnitude more active than its native counterpart in organic solvent. Such a dramatic activity enhancement was largely the result of a huge increase in the turnover frequency <em>k</em><sub>cat</sub>. Surprisingly, the <em>k</em><sub>cat</sub> values in organic solvent were one order of magnitude greater than their aqueous counterparts. As a result, the <em>k</em><sub>cat</sub>/<em>K</em><sub>m</sub> of GHS-treated lipoprotein lipase in organic solvent became comparable to the aqueous level within one order of magnitude. We thus have demonstrated for the first time that a lipase can display nearly aqueous-like activity in organic solvent. As an illustrative application of GHS-treated lipoprotein lipase, we performed the dynamic kinetic resolution of two secondary alcohols, which provided the products of high enantiopurity (98–99%ee) with high yields (90–91%).</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"134 ","pages":"Pages 148-153"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.10.009","citationCount":"2","resultStr":"{\"title\":\"Nearly aqueous-like activity of lipoprotein lipase treated with glucose-headed surfactant in organic solvent\",\"authors\":\"Yeonock Oh , Yoon Kyung Choi , Inyeol Yun, Eungyeong Lee, Kyungwoo Kim, Mahn-Joo Kim\",\"doi\":\"10.1016/j.molcatb.2016.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we explored the activation of a lipoprotein lipase from <em>Burkholderia species</em> by glucose-headed surfactants (GHSs) for enhancing its catalytic activity in organic solvent. Three GHSs were prepared and then tested as the additives for inducing the activation of lipoprotein lipase. The kinetic parameters of GHS-treated lipoprotein lipase were determined for the hydrolysis or alcoholysis of <em>p</em>-nitrophenyl acetate. It was found that GHS-treated lipoprotein lipase was 4 to 5 orders of magnitude more active than its native counterpart in organic solvent. Such a dramatic activity enhancement was largely the result of a huge increase in the turnover frequency <em>k</em><sub>cat</sub>. Surprisingly, the <em>k</em><sub>cat</sub> values in organic solvent were one order of magnitude greater than their aqueous counterparts. As a result, the <em>k</em><sub>cat</sub>/<em>K</em><sub>m</sub> of GHS-treated lipoprotein lipase in organic solvent became comparable to the aqueous level within one order of magnitude. We thus have demonstrated for the first time that a lipase can display nearly aqueous-like activity in organic solvent. As an illustrative application of GHS-treated lipoprotein lipase, we performed the dynamic kinetic resolution of two secondary alcohols, which provided the products of high enantiopurity (98–99%ee) with high yields (90–91%).</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"134 \",\"pages\":\"Pages 148-153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.10.009\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117716302028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716302028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
Nearly aqueous-like activity of lipoprotein lipase treated with glucose-headed surfactant in organic solvent
In this work, we explored the activation of a lipoprotein lipase from Burkholderia species by glucose-headed surfactants (GHSs) for enhancing its catalytic activity in organic solvent. Three GHSs were prepared and then tested as the additives for inducing the activation of lipoprotein lipase. The kinetic parameters of GHS-treated lipoprotein lipase were determined for the hydrolysis or alcoholysis of p-nitrophenyl acetate. It was found that GHS-treated lipoprotein lipase was 4 to 5 orders of magnitude more active than its native counterpart in organic solvent. Such a dramatic activity enhancement was largely the result of a huge increase in the turnover frequency kcat. Surprisingly, the kcat values in organic solvent were one order of magnitude greater than their aqueous counterparts. As a result, the kcat/Km of GHS-treated lipoprotein lipase in organic solvent became comparable to the aqueous level within one order of magnitude. We thus have demonstrated for the first time that a lipase can display nearly aqueous-like activity in organic solvent. As an illustrative application of GHS-treated lipoprotein lipase, we performed the dynamic kinetic resolution of two secondary alcohols, which provided the products of high enantiopurity (98–99%ee) with high yields (90–91%).
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.