骨x射线分类与异常检测的混合两阶段CNN-SVM模型

Hadeer El-Saadawy, M. Tantawi, Howida A. Shedeed, M. Tolba
{"title":"骨x射线分类与异常检测的混合两阶段CNN-SVM模型","authors":"Hadeer El-Saadawy, M. Tantawi, Howida A. Shedeed, M. Tolba","doi":"10.4018/ijskd.2021100104","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel automatic reliable hybrid two-stage method for bone x-rays abnormality detection. For this purpose, 10 different pre-trained convolutional neural networks architectures with different number of layers are examined. The introduced method considers the seven extremity upper bones, namely shoulder, humerus, forearm, elbow, wrist, hand, and finger. The enhanced images are fed into the first stage to classify the bone type into one of the seven bones. Thereafter, the abnormality is detected in the second stage using a specific classifier according to the bone type. Thus, the classification step consists of eight different classifiers: one for the bone classification stage and seven for the abnormality detection stage. Finally, support vector machine layer is examined as a last layer of the classification in the second stage. The best average sensitivity and specificity achieved by the first stage are 95.78% and 99.45%, and 83.25% and 83.25% for the second stage, respectively. All the experiments were carried out using MURA dataset.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"63 1","pages":"50-65"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Two-Stage CNN-SVM Model for Bone X-Rays Classification and Abnormality Detection\",\"authors\":\"Hadeer El-Saadawy, M. Tantawi, Howida A. Shedeed, M. Tolba\",\"doi\":\"10.4018/ijskd.2021100104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel automatic reliable hybrid two-stage method for bone x-rays abnormality detection. For this purpose, 10 different pre-trained convolutional neural networks architectures with different number of layers are examined. The introduced method considers the seven extremity upper bones, namely shoulder, humerus, forearm, elbow, wrist, hand, and finger. The enhanced images are fed into the first stage to classify the bone type into one of the seven bones. Thereafter, the abnormality is detected in the second stage using a specific classifier according to the bone type. Thus, the classification step consists of eight different classifiers: one for the bone classification stage and seven for the abnormality detection stage. Finally, support vector machine layer is examined as a last layer of the classification in the second stage. The best average sensitivity and specificity achieved by the first stage are 95.78% and 99.45%, and 83.25% and 83.25% for the second stage, respectively. All the experiments were carried out using MURA dataset.\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"63 1\",\"pages\":\"50-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijskd.2021100104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2021100104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种新型的、自动可靠的混合两阶段骨x射线异常检测方法。为此,研究了具有不同层数的10种不同的预训练卷积神经网络架构。所介绍的方法考虑了四肢上肢的七块骨头,即肩、肱骨、前臂、肘、腕、手和手指。将增强图像输入到第一阶段,将骨骼类型划分为七个骨骼之一。此后,在第二阶段使用根据骨类型的特定分类器检测异常。因此,分类步骤由八个不同的分类器组成:一个用于骨分类阶段,七个用于异常检测阶段。最后,将支持向量机层作为第二阶段分类的最后一层进行检验。第一阶段的平均灵敏度和特异性分别为95.78%和99.45%,第二阶段的平均灵敏度和特异性分别为83.25%和83.25%。所有实验均使用MURA数据集进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Two-Stage CNN-SVM Model for Bone X-Rays Classification and Abnormality Detection
This paper introduces a novel automatic reliable hybrid two-stage method for bone x-rays abnormality detection. For this purpose, 10 different pre-trained convolutional neural networks architectures with different number of layers are examined. The introduced method considers the seven extremity upper bones, namely shoulder, humerus, forearm, elbow, wrist, hand, and finger. The enhanced images are fed into the first stage to classify the bone type into one of the seven bones. Thereafter, the abnormality is detected in the second stage using a specific classifier according to the bone type. Thus, the classification step consists of eight different classifiers: one for the bone classification stage and seven for the abnormality detection stage. Finally, support vector machine layer is examined as a last layer of the classification in the second stage. The best average sensitivity and specificity achieved by the first stage are 95.78% and 99.45%, and 83.25% and 83.25% for the second stage, respectively. All the experiments were carried out using MURA dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信