M. Elafify, H. Khalifa, M. Al-Ashmawy, M. Elsherbini, Amera Abd El Latif, Takashi Okanda, Tetsuya Matsumoto, S. Koseki, A. Abdelkhalek
{"title":"埃及牛奶和奶制品中产志贺毒素大肠杆菌的流行率和耐药性","authors":"M. Elafify, H. Khalifa, M. Al-Ashmawy, M. Elsherbini, Amera Abd El Latif, Takashi Okanda, Tetsuya Matsumoto, S. Koseki, A. Abdelkhalek","doi":"10.1080/03601234.2019.1686312","DOIUrl":null,"url":null,"abstract":"Abstract Food contaminated with Shiga toxin-producing Escherichia coli (STEC) represents a hazardous public health problem worldwide. Therefore, the present study was performed to elucidate the virulent and antimicrobial resistance characteristics of STEC isolated from milk and dairy products marketed in Egypt. A total of 125 samples (raw market milk, bulk tank milk, Kareish cheese, white soft cheese, and small scale-produced ice cream, 25 each) were collected for determination the prevalence and antimicrobial resistance profiling of STEC. Thirty-six STEC isolates were recovered from milk and dairy products. Serological analysis illustrated that three isolates were E. coli O157:H7 and 33 isolates belonged to different serotypes. Molecular examination indicated that all isolates harboured stx1 and/or stx2 genes, 14 isolates expressed eaeA gene and 3 isolates possessed rfbE gene. Antimicrobial resistance profiling of the isolates was both phenotypically and genetically examined. Interestingly, 31 out of 36 (86.11%) isolates were multidrug-resistant and harboured the extended-spectrum β-lactamase encoding genes, namely, blaCTX-M-15, blaSHV-12 and blaCTX-M-14. Moreover, 12 isolates (33.33%) harboured plasmid-mediated quinolone resistant gene, qnrS. The overall conclusion of the current investigation indicated insufficient hygienic measures adopted during milking, handling, and processing leading to development of pathogenic and multidrug-resistant STEC.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"2 1","pages":"265 - 272"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Prevalence and antimicrobial resistance of Shiga toxin-producing Escherichia coli in milk and dairy products in Egypt\",\"authors\":\"M. Elafify, H. Khalifa, M. Al-Ashmawy, M. Elsherbini, Amera Abd El Latif, Takashi Okanda, Tetsuya Matsumoto, S. Koseki, A. Abdelkhalek\",\"doi\":\"10.1080/03601234.2019.1686312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Food contaminated with Shiga toxin-producing Escherichia coli (STEC) represents a hazardous public health problem worldwide. Therefore, the present study was performed to elucidate the virulent and antimicrobial resistance characteristics of STEC isolated from milk and dairy products marketed in Egypt. A total of 125 samples (raw market milk, bulk tank milk, Kareish cheese, white soft cheese, and small scale-produced ice cream, 25 each) were collected for determination the prevalence and antimicrobial resistance profiling of STEC. Thirty-six STEC isolates were recovered from milk and dairy products. Serological analysis illustrated that three isolates were E. coli O157:H7 and 33 isolates belonged to different serotypes. Molecular examination indicated that all isolates harboured stx1 and/or stx2 genes, 14 isolates expressed eaeA gene and 3 isolates possessed rfbE gene. Antimicrobial resistance profiling of the isolates was both phenotypically and genetically examined. Interestingly, 31 out of 36 (86.11%) isolates were multidrug-resistant and harboured the extended-spectrum β-lactamase encoding genes, namely, blaCTX-M-15, blaSHV-12 and blaCTX-M-14. Moreover, 12 isolates (33.33%) harboured plasmid-mediated quinolone resistant gene, qnrS. The overall conclusion of the current investigation indicated insufficient hygienic measures adopted during milking, handling, and processing leading to development of pathogenic and multidrug-resistant STEC.\",\"PeriodicalId\":15670,\"journal\":{\"name\":\"Journal of Environmental Science and Health, Part B\",\"volume\":\"2 1\",\"pages\":\"265 - 272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health, Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2019.1686312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health, Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03601234.2019.1686312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prevalence and antimicrobial resistance of Shiga toxin-producing Escherichia coli in milk and dairy products in Egypt
Abstract Food contaminated with Shiga toxin-producing Escherichia coli (STEC) represents a hazardous public health problem worldwide. Therefore, the present study was performed to elucidate the virulent and antimicrobial resistance characteristics of STEC isolated from milk and dairy products marketed in Egypt. A total of 125 samples (raw market milk, bulk tank milk, Kareish cheese, white soft cheese, and small scale-produced ice cream, 25 each) were collected for determination the prevalence and antimicrobial resistance profiling of STEC. Thirty-six STEC isolates were recovered from milk and dairy products. Serological analysis illustrated that three isolates were E. coli O157:H7 and 33 isolates belonged to different serotypes. Molecular examination indicated that all isolates harboured stx1 and/or stx2 genes, 14 isolates expressed eaeA gene and 3 isolates possessed rfbE gene. Antimicrobial resistance profiling of the isolates was both phenotypically and genetically examined. Interestingly, 31 out of 36 (86.11%) isolates were multidrug-resistant and harboured the extended-spectrum β-lactamase encoding genes, namely, blaCTX-M-15, blaSHV-12 and blaCTX-M-14. Moreover, 12 isolates (33.33%) harboured plasmid-mediated quinolone resistant gene, qnrS. The overall conclusion of the current investigation indicated insufficient hygienic measures adopted during milking, handling, and processing leading to development of pathogenic and multidrug-resistant STEC.