一般最优多项式逼近、稳定和统一的投影

IF 0.4 Q4 MATHEMATICS
Christopher Felder
{"title":"一般最优多项式逼近、稳定和统一的投影","authors":"Christopher Felder","doi":"10.4208/ata.OA-2020-0047","DOIUrl":null,"url":null,"abstract":"For various Hilbert spaces of analytic functions on the unit disk, we characterize when a function $f$ has optimal polynomial approximants given by truncations of a single power series. We also introduce a generalized notion of optimal approximant and use this to explicitly compute orthogonal projections of 1 onto certain shift invariant subspaces.","PeriodicalId":29763,"journal":{"name":"Analysis in Theory and Applications","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"General Optimal Polynomial Approximants, Stabilization, and Projections of Unity\",\"authors\":\"Christopher Felder\",\"doi\":\"10.4208/ata.OA-2020-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For various Hilbert spaces of analytic functions on the unit disk, we characterize when a function $f$ has optimal polynomial approximants given by truncations of a single power series. We also introduce a generalized notion of optimal approximant and use this to explicitly compute orthogonal projections of 1 onto certain shift invariant subspaces.\",\"PeriodicalId\":29763,\"journal\":{\"name\":\"Analysis in Theory and Applications\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis in Theory and Applications\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.4208/ata.OA-2020-0047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis in Theory and Applications","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4208/ata.OA-2020-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

对于单位圆盘上解析函数的各种希尔伯特空间,我们刻画了函数$f$何时具有由单个幂级数截断给出的最优多项式近似。我们还引入了最优逼近的广义概念,并利用它显式地计算了1在移不变子空间上的正交投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Optimal Polynomial Approximants, Stabilization, and Projections of Unity
For various Hilbert spaces of analytic functions on the unit disk, we characterize when a function $f$ has optimal polynomial approximants given by truncations of a single power series. We also introduce a generalized notion of optimal approximant and use this to explicitly compute orthogonal projections of 1 onto certain shift invariant subspaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
747
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信