量子态层析成像的选择概念

3区 物理与天体物理 Q1 Materials Science
A. Czerwinski
{"title":"量子态层析成像的选择概念","authors":"A. Czerwinski","doi":"10.3390/opt3030026","DOIUrl":null,"url":null,"abstract":"Quantum state tomography (QST) refers to any method that allows one to reconstruct the accurate representation of a quantum system based on data obtainable from an experiment. In this paper, we concentrate on theoretical methods of quantum tomography, but some significant experimental results are also presented. Due to a considerable body of literature and intensive ongoing research activity in the field of QST, this overview is restricted to presenting selected ideas, methods, and results. First, we discuss tomography of pure states by distinguishing two aspects—complex vector reconstruction and wavefunction measurement. Then, we move on to the Wigner function reconstruction. Finally, the core section of the article is devoted to the stroboscopic tomography, which provides the optimal criteria for state recovery by including the dynamics in the scheme. Throughout the paper, we pay particular attention to photonic tomography, since multiple protocols in quantum optics require well-defined states of light.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Selected Concepts of Quantum State Tomography\",\"authors\":\"A. Czerwinski\",\"doi\":\"10.3390/opt3030026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum state tomography (QST) refers to any method that allows one to reconstruct the accurate representation of a quantum system based on data obtainable from an experiment. In this paper, we concentrate on theoretical methods of quantum tomography, but some significant experimental results are also presented. Due to a considerable body of literature and intensive ongoing research activity in the field of QST, this overview is restricted to presenting selected ideas, methods, and results. First, we discuss tomography of pure states by distinguishing two aspects—complex vector reconstruction and wavefunction measurement. Then, we move on to the Wigner function reconstruction. Finally, the core section of the article is devoted to the stroboscopic tomography, which provides the optimal criteria for state recovery by including the dynamics in the scheme. Throughout the paper, we pay particular attention to photonic tomography, since multiple protocols in quantum optics require well-defined states of light.\",\"PeriodicalId\":54548,\"journal\":{\"name\":\"Progress in Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/opt3030026\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/opt3030026","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 5

摘要

量子态层析成像(QST)是指基于实验数据重建量子系统精确表征的任何方法。本文主要讨论了量子层析成像的理论方法,并给出了一些重要的实验结果。由于在QST领域有大量的文献和密集的正在进行的研究活动,本综述仅限于介绍选定的思想、方法和结果。首先,从复矢量重建和波函数测量两个方面讨论了纯态层析成像。然后,我们继续进行维格纳函数重建。最后,文章的核心部分致力于频闪层析成像,它通过在方案中包含动力学提供了状态恢复的最佳标准。在整个论文中,我们特别关注光子层析成像,因为量子光学中的多种协议需要定义良好的光态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selected Concepts of Quantum State Tomography
Quantum state tomography (QST) refers to any method that allows one to reconstruct the accurate representation of a quantum system based on data obtainable from an experiment. In this paper, we concentrate on theoretical methods of quantum tomography, but some significant experimental results are also presented. Due to a considerable body of literature and intensive ongoing research activity in the field of QST, this overview is restricted to presenting selected ideas, methods, and results. First, we discuss tomography of pure states by distinguishing two aspects—complex vector reconstruction and wavefunction measurement. Then, we move on to the Wigner function reconstruction. Finally, the core section of the article is devoted to the stroboscopic tomography, which provides the optimal criteria for state recovery by including the dynamics in the scheme. Throughout the paper, we pay particular attention to photonic tomography, since multiple protocols in quantum optics require well-defined states of light.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Optics
Progress in Optics 物理-光学
CiteScore
4.50
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信