Susanne Dandl, Giuseppe Casalicchio, Bernd Bischl, Ludwig Bothmann
{"title":"可解释的区域描述符:基于hyperbox的局部解释","authors":"Susanne Dandl, Giuseppe Casalicchio, Bernd Bischl, Ludwig Bothmann","doi":"10.48550/arXiv.2305.02780","DOIUrl":null,"url":null,"abstract":"This work introduces interpretable regional descriptors, or IRDs, for local, model-agnostic interpretations. IRDs are hyperboxes that describe how an observation's feature values can be changed without affecting its prediction. They justify a prediction by providing a set of\"even if\"arguments (semi-factual explanations), and they indicate which features affect a prediction and whether pointwise biases or implausibilities exist. A concrete use case shows that this is valuable for both machine learning modelers and persons subject to a decision. We formalize the search for IRDs as an optimization problem and introduce a unifying framework for computing IRDs that covers desiderata, initialization techniques, and a post-processing method. We show how existing hyperbox methods can be adapted to fit into this unified framework. A benchmark study compares the methods based on several quality measures and identifies two strategies to improve IRDs.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"207 1","pages":"479-495"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable Regional Descriptors: Hyperbox-Based Local Explanations\",\"authors\":\"Susanne Dandl, Giuseppe Casalicchio, Bernd Bischl, Ludwig Bothmann\",\"doi\":\"10.48550/arXiv.2305.02780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces interpretable regional descriptors, or IRDs, for local, model-agnostic interpretations. IRDs are hyperboxes that describe how an observation's feature values can be changed without affecting its prediction. They justify a prediction by providing a set of\\\"even if\\\"arguments (semi-factual explanations), and they indicate which features affect a prediction and whether pointwise biases or implausibilities exist. A concrete use case shows that this is valuable for both machine learning modelers and persons subject to a decision. We formalize the search for IRDs as an optimization problem and introduce a unifying framework for computing IRDs that covers desiderata, initialization techniques, and a post-processing method. We show how existing hyperbox methods can be adapted to fit into this unified framework. A benchmark study compares the methods based on several quality measures and identifies two strategies to improve IRDs.\",\"PeriodicalId\":74091,\"journal\":{\"name\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"volume\":\"207 1\",\"pages\":\"479-495\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.02780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.02780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations
This work introduces interpretable regional descriptors, or IRDs, for local, model-agnostic interpretations. IRDs are hyperboxes that describe how an observation's feature values can be changed without affecting its prediction. They justify a prediction by providing a set of"even if"arguments (semi-factual explanations), and they indicate which features affect a prediction and whether pointwise biases or implausibilities exist. A concrete use case shows that this is valuable for both machine learning modelers and persons subject to a decision. We formalize the search for IRDs as an optimization problem and introduce a unifying framework for computing IRDs that covers desiderata, initialization techniques, and a post-processing method. We show how existing hyperbox methods can be adapted to fit into this unified framework. A benchmark study compares the methods based on several quality measures and identifies two strategies to improve IRDs.