{"title":"E⊗E的最小度标准同一性","authors":"Geraldo de Assis Junior, Sergio Mota Alves","doi":"10.12988/ija.2021.91572","DOIUrl":null,"url":null,"abstract":"Let K be a field of characteristics p > 2. Giambruno and Koshlukov have proved [2] that Grassmann Algebra E satisfies the standard identity of degree m if, and only if, m ≥ p + 1. The object of this paper is to extend such result to E ⊗ E, more precisely proving that E ⊗ E satisfies the standard identity of degree m if, and only if, m ≥ 2p. Mathematics Subject Classification: 15A75, 16R20","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The minimal degree standard identity on E ⊗ E\",\"authors\":\"Geraldo de Assis Junior, Sergio Mota Alves\",\"doi\":\"10.12988/ija.2021.91572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let K be a field of characteristics p > 2. Giambruno and Koshlukov have proved [2] that Grassmann Algebra E satisfies the standard identity of degree m if, and only if, m ≥ p + 1. The object of this paper is to extend such result to E ⊗ E, more precisely proving that E ⊗ E satisfies the standard identity of degree m if, and only if, m ≥ 2p. Mathematics Subject Classification: 15A75, 16R20\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ija.2021.91572\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ija.2021.91572","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let K be a field of characteristics p > 2. Giambruno and Koshlukov have proved [2] that Grassmann Algebra E satisfies the standard identity of degree m if, and only if, m ≥ p + 1. The object of this paper is to extend such result to E ⊗ E, more precisely proving that E ⊗ E satisfies the standard identity of degree m if, and only if, m ≥ 2p. Mathematics Subject Classification: 15A75, 16R20
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.