N. Kalantzis, T. Fletcher, Antonios Pezouvanis, K. Ebrahimi
{"title":"整车设计的整体仿真","authors":"N. Kalantzis, T. Fletcher, Antonios Pezouvanis, K. Ebrahimi","doi":"10.1504/IJPT.2021.114736","DOIUrl":null,"url":null,"abstract":"A holistic vehicle simulation capability is necessary for front-loading component, subsystem, and controller design, for the early detection of component and subsystem design flaws, as well as for the model-based calibration of powertrain control modules. The current document explores the concept of holistic vehicle simulation by means of reviewing the current trends in automotive system design and available solutions in terms of model interfaces and neutral modelling environments. The review is followed by the presentation of a Simulink-based multi-disciplinary modelling environment (MME) developed by the authors to accommodate simulation work across the vehicle development cycle.","PeriodicalId":37550,"journal":{"name":"International Journal of Powertrains","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holistic simulation for integrated vehicle design\",\"authors\":\"N. Kalantzis, T. Fletcher, Antonios Pezouvanis, K. Ebrahimi\",\"doi\":\"10.1504/IJPT.2021.114736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A holistic vehicle simulation capability is necessary for front-loading component, subsystem, and controller design, for the early detection of component and subsystem design flaws, as well as for the model-based calibration of powertrain control modules. The current document explores the concept of holistic vehicle simulation by means of reviewing the current trends in automotive system design and available solutions in terms of model interfaces and neutral modelling environments. The review is followed by the presentation of a Simulink-based multi-disciplinary modelling environment (MME) developed by the authors to accommodate simulation work across the vehicle development cycle.\",\"PeriodicalId\":37550,\"journal\":{\"name\":\"International Journal of Powertrains\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Powertrains\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJPT.2021.114736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Powertrains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJPT.2021.114736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A holistic vehicle simulation capability is necessary for front-loading component, subsystem, and controller design, for the early detection of component and subsystem design flaws, as well as for the model-based calibration of powertrain control modules. The current document explores the concept of holistic vehicle simulation by means of reviewing the current trends in automotive system design and available solutions in terms of model interfaces and neutral modelling environments. The review is followed by the presentation of a Simulink-based multi-disciplinary modelling environment (MME) developed by the authors to accommodate simulation work across the vehicle development cycle.
期刊介绍:
IJPT addresses novel scientific/technological results contributing to advancing powertrain technology, from components/subsystems to system integration/controls. Focus is primarily but not exclusively on ground vehicle applications. IJPT''s perspective is largely inspired by the fact that many innovations in powertrain advancement are only possible due to synergies between mechanical design, mechanisms, mechatronics, controls, networking system integration, etc. The science behind these is characterised by physical phenomena across the range of physics (multiphysics) and scale of motion (multiscale) governing the behaviour of components/subsystems.