热毛细效应驱动液滴:表面张力与温度的二次依赖关系

IF 0.1 Q4 PHYSICS, MULTIDISCIPLINARY
J. M. Intyre, J. Gomba, C. A. Perazzo, Pinto Tandil Argentina. Cificen
{"title":"热毛细效应驱动液滴:表面张力与温度的二次依赖关系","authors":"J. M. Intyre, J. Gomba, C. A. Perazzo, Pinto Tandil Argentina. Cificen","doi":"10.31527/analesafa.2020.31.3.107","DOIUrl":null,"url":null,"abstract":"We study the migration of droplets on a solid surface which is under a uniform temperature gradient. The present article focus on partial wetting fluids which surface tension depends on the squared temperature. These type of liquids, called self-rewetting, show a complex dynamics and here we will compare with those liquids of linear dependence in the temperature. Unlike to the latter ones, the droplet width increases with the time.","PeriodicalId":41478,"journal":{"name":"Anales AFA","volume":"17 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRIVEN DROPLETS BY THERMOCAPILLARY EFFECT: QUADRATIC DEPENDENCE OF THE SURFACE TENSION ON THE TEMPERATURE\",\"authors\":\"J. M. Intyre, J. Gomba, C. A. Perazzo, Pinto Tandil Argentina. Cificen\",\"doi\":\"10.31527/analesafa.2020.31.3.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the migration of droplets on a solid surface which is under a uniform temperature gradient. The present article focus on partial wetting fluids which surface tension depends on the squared temperature. These type of liquids, called self-rewetting, show a complex dynamics and here we will compare with those liquids of linear dependence in the temperature. Unlike to the latter ones, the droplet width increases with the time.\",\"PeriodicalId\":41478,\"journal\":{\"name\":\"Anales AFA\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anales AFA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31527/analesafa.2020.31.3.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales AFA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31527/analesafa.2020.31.3.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了均匀温度梯度下固体表面上液滴的迁移。本文主要研究表面张力依赖于温度平方的部分润湿流体。这种类型的液体,称为自润湿,表现出复杂的动力学,这里我们将与那些与温度线性相关的液体进行比较。与后者不同的是,液滴宽度随时间的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DRIVEN DROPLETS BY THERMOCAPILLARY EFFECT: QUADRATIC DEPENDENCE OF THE SURFACE TENSION ON THE TEMPERATURE
We study the migration of droplets on a solid surface which is under a uniform temperature gradient. The present article focus on partial wetting fluids which surface tension depends on the squared temperature. These type of liquids, called self-rewetting, show a complex dynamics and here we will compare with those liquids of linear dependence in the temperature. Unlike to the latter ones, the droplet width increases with the time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anales AFA
Anales AFA PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.40
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信