基于等高积分矩阵函数块编码框架的量子算法

S. Takahira, A. Ohashi, T. Sogabe, T. Usuda
{"title":"基于等高积分矩阵函数块编码框架的量子算法","authors":"S. Takahira, A. Ohashi, T. Sogabe, T. Usuda","doi":"10.26421/qic22.11-12-4","DOIUrl":null,"url":null,"abstract":"he matrix functions can be defined by Cauchy's integral formula and can be approximated by the linear combination of inverses of shifted matrices using a quadrature formula. In this paper, we propose a quantum algorithm for matrix functions based on a procedure to implement the linear combination of the inverses on quantum computers. Compared with the previous study [S. Takahira, A. Ohashi, T. Sogabe, and T.S. Usuda, Quant. Inf. Comput., \\textbf{20}, 1\\&2, 14--36, (Feb. 2020)] that proposed a quantum algorithm to compute a quantum state for the matrix function based on the circular contour centered at the origin, the quantum algorithm in the present paper can be applied to a more general contour. Moreover, the algorithm is described by the block-encoding framework. Similarly to the previous study, the algorithm can be applied even if the input matrix is not a Hermitian or normal matrix. This is an advantage compared with quantum singular value transformation.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"23 1","pages":"965-979"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantum algorithms based on the block-encoding framework for matrix functions by contour integrals\",\"authors\":\"S. Takahira, A. Ohashi, T. Sogabe, T. Usuda\",\"doi\":\"10.26421/qic22.11-12-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"he matrix functions can be defined by Cauchy's integral formula and can be approximated by the linear combination of inverses of shifted matrices using a quadrature formula. In this paper, we propose a quantum algorithm for matrix functions based on a procedure to implement the linear combination of the inverses on quantum computers. Compared with the previous study [S. Takahira, A. Ohashi, T. Sogabe, and T.S. Usuda, Quant. Inf. Comput., \\\\textbf{20}, 1\\\\&2, 14--36, (Feb. 2020)] that proposed a quantum algorithm to compute a quantum state for the matrix function based on the circular contour centered at the origin, the quantum algorithm in the present paper can be applied to a more general contour. Moreover, the algorithm is described by the block-encoding framework. Similarly to the previous study, the algorithm can be applied even if the input matrix is not a Hermitian or normal matrix. This is an advantage compared with quantum singular value transformation.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"23 1\",\"pages\":\"965-979\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic22.11-12-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.11-12-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

矩阵函数可由柯西积分公式定义,并可由移位矩阵的逆的线性组合用正交公式逼近。本文提出了一种在量子计算机上实现逆线性组合的矩阵函数量子算法。与以往研究相比[S;Takahira, A. Ohashi, T. Sogabe和T.S. Usuda, Quant. Inf. computer。[j], \textbf{20}, 1&2, 14—36,(2020年2月)]提出了一种基于以原点为中心的圆形轮廓计算矩阵函数量子态的量子算法,本文的量子算法可以应用于更一般的轮廓。该算法采用块编码框架进行描述。与之前的研究类似,即使输入矩阵不是厄米矩阵或正态矩阵,该算法也可以应用。这与量子奇异值变换相比具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum algorithms based on the block-encoding framework for matrix functions by contour integrals
he matrix functions can be defined by Cauchy's integral formula and can be approximated by the linear combination of inverses of shifted matrices using a quadrature formula. In this paper, we propose a quantum algorithm for matrix functions based on a procedure to implement the linear combination of the inverses on quantum computers. Compared with the previous study [S. Takahira, A. Ohashi, T. Sogabe, and T.S. Usuda, Quant. Inf. Comput., \textbf{20}, 1\&2, 14--36, (Feb. 2020)] that proposed a quantum algorithm to compute a quantum state for the matrix function based on the circular contour centered at the origin, the quantum algorithm in the present paper can be applied to a more general contour. Moreover, the algorithm is described by the block-encoding framework. Similarly to the previous study, the algorithm can be applied even if the input matrix is not a Hermitian or normal matrix. This is an advantage compared with quantum singular value transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信