选择学校的动态匹配:在晚取消后有效地重新分配座位(特邀演讲)

Irene Lo
{"title":"选择学校的动态匹配:在晚取消后有效地重新分配座位(特邀演讲)","authors":"Irene Lo","doi":"10.2139/ssrn.2993375","DOIUrl":null,"url":null,"abstract":"In the school choice market, where scarce public school seats are assigned to students, a key issue is how to reassign seats that are vacated after an initial round of centralized assignment. Every year around 10% of students assigned a seat in the NYC public high school system eventually do not use it, and their vacated seats can be reassigned. Practical solutions to the reassignment problem must be simple to implement, truthful and efficient. I propose and axiomatically justify a class of reassignment mechanisms, the Per- muted Lottery Deferred Acceptance (PLDA) mechanisms, which generalize the commonly used Deferred Acceptance (DA) school choice mechanism to a two-round setting and retain its desirable in- centive and efficiency properties. I also provide guidance to school districts as to how to choose the appropriate mechanism in this class for their setting. Centralized admissions are typically conducted in a single round using Deferred Acceptance, with a lottery used to break ties in each school’s prioritization of students. Our proposed PLDA mechanisms reassign vacated seats using a second round of DA with a lottery based on a suitable permutation of the first-round lottery numbers. I demonstrate that under a natural order condition on aggregate student demand for schools, the second-round tie-breaking lottery can be correlated arbitrarily with that of the first round without affecting allocative welfare. I also show how the identifying char- acteristic of PLDA mechanisms, their permutation, can be chosen to control reallocation. vacated after the initial round are reassigned using decentralized waitlists that create significant student movement after the start of the school year, which is costly for both students and schools. I show that reversing the lottery order between rounds minimizes reassignment among all PLDA mechanisms, allowing us to alleviate costly student movement between schools without affecting the ef- ficiency of the final allocation. In a setting without school priorities, I also characterize PLDA mechanisms as the class of mechanisms that provide students with a guarantee at their first-round assign- ment, respect school priorities, and are strategy-proof, constrained Pareto efficient, and satisfy some mild symmetry properties. Finally, I provide simulations of the performance of different PLDA mecha- nisms in the presence of school priorities. All simulated PLDAs have similar allocative efficiency, while the PLDA based on reversing the tie-breaking lottery between rounds minimizes the number of reassigned students. These results support our theoretical findings. This is based on joint work with Itai Feigenbaum, Yash Kanoria, and Jay Sethuraman.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Dynamic matching in school choice: efficient seat reassignment after late cancellations (invited talk)\",\"authors\":\"Irene Lo\",\"doi\":\"10.2139/ssrn.2993375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the school choice market, where scarce public school seats are assigned to students, a key issue is how to reassign seats that are vacated after an initial round of centralized assignment. Every year around 10% of students assigned a seat in the NYC public high school system eventually do not use it, and their vacated seats can be reassigned. Practical solutions to the reassignment problem must be simple to implement, truthful and efficient. I propose and axiomatically justify a class of reassignment mechanisms, the Per- muted Lottery Deferred Acceptance (PLDA) mechanisms, which generalize the commonly used Deferred Acceptance (DA) school choice mechanism to a two-round setting and retain its desirable in- centive and efficiency properties. I also provide guidance to school districts as to how to choose the appropriate mechanism in this class for their setting. Centralized admissions are typically conducted in a single round using Deferred Acceptance, with a lottery used to break ties in each school’s prioritization of students. Our proposed PLDA mechanisms reassign vacated seats using a second round of DA with a lottery based on a suitable permutation of the first-round lottery numbers. I demonstrate that under a natural order condition on aggregate student demand for schools, the second-round tie-breaking lottery can be correlated arbitrarily with that of the first round without affecting allocative welfare. I also show how the identifying char- acteristic of PLDA mechanisms, their permutation, can be chosen to control reallocation. vacated after the initial round are reassigned using decentralized waitlists that create significant student movement after the start of the school year, which is costly for both students and schools. I show that reversing the lottery order between rounds minimizes reassignment among all PLDA mechanisms, allowing us to alleviate costly student movement between schools without affecting the ef- ficiency of the final allocation. In a setting without school priorities, I also characterize PLDA mechanisms as the class of mechanisms that provide students with a guarantee at their first-round assign- ment, respect school priorities, and are strategy-proof, constrained Pareto efficient, and satisfy some mild symmetry properties. Finally, I provide simulations of the performance of different PLDA mecha- nisms in the presence of school priorities. All simulated PLDAs have similar allocative efficiency, while the PLDA based on reversing the tie-breaking lottery between rounds minimizes the number of reassigned students. These results support our theoretical findings. This is based on joint work with Itai Feigenbaum, Yash Kanoria, and Jay Sethuraman.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2993375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2993375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在稀缺的公立学校席位被分配给学生的择校市场中,如何重新分配第一轮集中分配后空出的席位是一个关键问题。每年,在纽约市公立高中系统中,约有10%的学生被分配了一个座位,但最终没有使用它,他们空出来的座位可以重新分配。重新分配问题的实际解决办法必须易于执行、真实和有效。我提出并证明了一类重新分配机制,即随机抽签延迟接受(PLDA)机制,它将常用的延迟接受(DA)学校选择机制推广到两轮设置,并保留了其理想的激励和效率特性。我还为学区提供指导,告诉他们如何根据自己的情况选择合适的课堂机制。集中式招生通常采用推迟录取的方式,通过抽签来打破每所学校对学生的优先顺序。我们提出的PLDA机制使用第二轮DA和基于第一轮摇号的适当排列的摇号来重新分配空出的席位。我证明了在学生对学校总需求的自然顺序条件下,第二轮抽签可以与第一轮抽签任意相关,而不会影响分配福利。我还展示了如何选择PLDA机制的识别特征,即它们的排列来控制再分配。在第一轮之后空出来的名额被重新分配,使用分散的候补名单,这在学年开始后产生了显著的学生流动,这对学生和学校来说都是昂贵的。我表明,在两轮抽签之间颠倒抽签顺序可以最大限度地减少所有PLDA机制之间的重新分配,使我们能够在不影响最终分配效率的情况下减轻学校之间昂贵的学生流动。在没有学校优先级的情况下,我还将PLDA机制描述为为学生提供第一轮分配保证的一类机制,尊重学校优先级,具有策略证明,约束帕累托效率,并满足一些轻微的对称性。最后,我提供了不同PLDA机制在学校优先级存在下的性能模拟。所有模拟的PLDA都具有相似的分配效率,而基于在回合之间反转平局抽签的PLDA最大限度地减少了重新分配的学生数量。这些结果支持了我们的理论发现。这是基于与Itai Feigenbaum, Yash Kanoria和Jay Sethuraman的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic matching in school choice: efficient seat reassignment after late cancellations (invited talk)
In the school choice market, where scarce public school seats are assigned to students, a key issue is how to reassign seats that are vacated after an initial round of centralized assignment. Every year around 10% of students assigned a seat in the NYC public high school system eventually do not use it, and their vacated seats can be reassigned. Practical solutions to the reassignment problem must be simple to implement, truthful and efficient. I propose and axiomatically justify a class of reassignment mechanisms, the Per- muted Lottery Deferred Acceptance (PLDA) mechanisms, which generalize the commonly used Deferred Acceptance (DA) school choice mechanism to a two-round setting and retain its desirable in- centive and efficiency properties. I also provide guidance to school districts as to how to choose the appropriate mechanism in this class for their setting. Centralized admissions are typically conducted in a single round using Deferred Acceptance, with a lottery used to break ties in each school’s prioritization of students. Our proposed PLDA mechanisms reassign vacated seats using a second round of DA with a lottery based on a suitable permutation of the first-round lottery numbers. I demonstrate that under a natural order condition on aggregate student demand for schools, the second-round tie-breaking lottery can be correlated arbitrarily with that of the first round without affecting allocative welfare. I also show how the identifying char- acteristic of PLDA mechanisms, their permutation, can be chosen to control reallocation. vacated after the initial round are reassigned using decentralized waitlists that create significant student movement after the start of the school year, which is costly for both students and schools. I show that reversing the lottery order between rounds minimizes reassignment among all PLDA mechanisms, allowing us to alleviate costly student movement between schools without affecting the ef- ficiency of the final allocation. In a setting without school priorities, I also characterize PLDA mechanisms as the class of mechanisms that provide students with a guarantee at their first-round assign- ment, respect school priorities, and are strategy-proof, constrained Pareto efficient, and satisfy some mild symmetry properties. Finally, I provide simulations of the performance of different PLDA mecha- nisms in the presence of school priorities. All simulated PLDAs have similar allocative efficiency, while the PLDA based on reversing the tie-breaking lottery between rounds minimizes the number of reassigned students. These results support our theoretical findings. This is based on joint work with Itai Feigenbaum, Yash Kanoria, and Jay Sethuraman.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信