抽象解读:过去、现在和未来

P. Cousot, R. Cousot
{"title":"抽象解读:过去、现在和未来","authors":"P. Cousot, R. Cousot","doi":"10.1145/2603088.2603165","DOIUrl":null,"url":null,"abstract":"Abstract interpretation is a theory of abstraction and constructive approximation of the mathematical structures used in the formal description of complex or infinite systems and the inference or verification of their combinatorial or undecidable properties. Developed in the late seventies, it has been since then used, implicitly or explicitly, to many aspects of computer science (such as static analysis and verification, contract inference, type inference, termination inference, model-checking, abstraction/refinement, program transformation (including watermarking, obfuscation, etc), combination of decision procedures, security, malware detection, database queries, etc) and more recently, to system biology and SAT/SMT solvers. Production-quality verification tools based on abstract interpretation are available and used in the advanced software, hardware, transportation, communication, and medical industries. The talk will consist in an introduction to the basic notions of abstract interpretation and the induced methodology for the systematic development of sound abstract interpretation-based tools. Examples of abstractions will be provided, from semantics to typing, grammars to safety, reachability to potential/definite termination, numerical to protein-protein abstractions, as well as applications (including those in industrial use) to software, hardware and system biology. This paper is a general discussion of abstract interpretation, with selected publications, which unfortunately are far from exhaustive both in the considered themes and the corresponding references.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Abstract interpretation: past, present and future\",\"authors\":\"P. Cousot, R. Cousot\",\"doi\":\"10.1145/2603088.2603165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract interpretation is a theory of abstraction and constructive approximation of the mathematical structures used in the formal description of complex or infinite systems and the inference or verification of their combinatorial or undecidable properties. Developed in the late seventies, it has been since then used, implicitly or explicitly, to many aspects of computer science (such as static analysis and verification, contract inference, type inference, termination inference, model-checking, abstraction/refinement, program transformation (including watermarking, obfuscation, etc), combination of decision procedures, security, malware detection, database queries, etc) and more recently, to system biology and SAT/SMT solvers. Production-quality verification tools based on abstract interpretation are available and used in the advanced software, hardware, transportation, communication, and medical industries. The talk will consist in an introduction to the basic notions of abstract interpretation and the induced methodology for the systematic development of sound abstract interpretation-based tools. Examples of abstractions will be provided, from semantics to typing, grammars to safety, reachability to potential/definite termination, numerical to protein-protein abstractions, as well as applications (including those in industrial use) to software, hardware and system biology. This paper is a general discussion of abstract interpretation, with selected publications, which unfortunately are far from exhaustive both in the considered themes and the corresponding references.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

抽象解释是对数学结构的抽象和构造近似的理论,用于对复杂或无限系统的形式描述,以及对其组合或不可判定性质的推断或验证。自70年代末发展以来,它已被隐式或显式地用于计算机科学的许多方面(如静态分析和验证,契约推理,类型推理,终止推理,模型检查,抽象/细化,程序转换(包括水印,混淆等),决策过程的组合,安全性,恶意软件检测,数据库查询等),以及最近的系统生物学和SAT/SMT求解器。基于抽象解释的生产质量验证工具可用于先进的软件、硬件、运输、通信和医疗行业。讲座将包括介绍抽象口译的基本概念,以及系统开发合理的基于抽象口译的工具的归纳方法。将提供抽象的示例,从语义到类型,语法到安全性,可达性到潜在/确定终止,数值到蛋白质-蛋白质抽象,以及应用(包括工业用途)到软件,硬件和系统生物学。本文是对抽象解释的一般性讨论,有选择的出版物,不幸的是,在考虑的主题和相应的参考文献中都远远不够详尽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstract interpretation: past, present and future
Abstract interpretation is a theory of abstraction and constructive approximation of the mathematical structures used in the formal description of complex or infinite systems and the inference or verification of their combinatorial or undecidable properties. Developed in the late seventies, it has been since then used, implicitly or explicitly, to many aspects of computer science (such as static analysis and verification, contract inference, type inference, termination inference, model-checking, abstraction/refinement, program transformation (including watermarking, obfuscation, etc), combination of decision procedures, security, malware detection, database queries, etc) and more recently, to system biology and SAT/SMT solvers. Production-quality verification tools based on abstract interpretation are available and used in the advanced software, hardware, transportation, communication, and medical industries. The talk will consist in an introduction to the basic notions of abstract interpretation and the induced methodology for the systematic development of sound abstract interpretation-based tools. Examples of abstractions will be provided, from semantics to typing, grammars to safety, reachability to potential/definite termination, numerical to protein-protein abstractions, as well as applications (including those in industrial use) to software, hardware and system biology. This paper is a general discussion of abstract interpretation, with selected publications, which unfortunately are far from exhaustive both in the considered themes and the corresponding references.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信