最小二乘配置和方差分量估计在卫星测高数据交叉分析和高度计定标中的应用

IF 1.7 3区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
Mahmoud Pirooznia, M. Raoofian Naeeni
{"title":"最小二乘配置和方差分量估计在卫星测高数据交叉分析和高度计定标中的应用","authors":"Mahmoud Pirooznia, M. Raoofian Naeeni","doi":"10.1080/1755876X.2019.1681873","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, the collocation method accompanied with variance component estimation is used for least square adjustment of crossover observations in order to determine the effects of radial errors on the observations of satellite altimetry. The collocation is used for time series analysis of sea surface height observations both for predicting the possible missing observations in each cycle, and for approximating the observation of each cycle at crossover points. In addition, use is made of the variance component estimation to quantify the noise variance of observations and improve the least square evaluation of radial errors. For analysis of radial errors, two different approaches are followed, in the first approach, the radial errors are assumed to behave like a series of trigonometric function, the coefficients of which are unknowns which should be determined from observations. In the second approach, the values of radial errors, for ascending and descending passes are determined. Our results show the efficiency of collocation algorithm for highly accurate time series analysis of altimetry observations and moreover, they reveal the effectiveness of variance component estimation for true noise specification of observations which can significantly improve the results of least square adjustment. The outcome of this study can be used to calibration of altimeters. The numerical results indicate that the mean range biases of Topex/Poseidon, Jason 1-2 and ENVISAT in the six single and dual crossover points using the first and the second methods are about 0, 84, 33, 204 and 0, 98, 41, 286 mm, respectively.","PeriodicalId":50105,"journal":{"name":"Journal of Operational Oceanography","volume":"43 1","pages":"100 - 120"},"PeriodicalIF":1.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The application of least-square collocation and variance component estimation in crossover analysis of satellite altimetry observations and altimeter calibration\",\"authors\":\"Mahmoud Pirooznia, M. Raoofian Naeeni\",\"doi\":\"10.1080/1755876X.2019.1681873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, the collocation method accompanied with variance component estimation is used for least square adjustment of crossover observations in order to determine the effects of radial errors on the observations of satellite altimetry. The collocation is used for time series analysis of sea surface height observations both for predicting the possible missing observations in each cycle, and for approximating the observation of each cycle at crossover points. In addition, use is made of the variance component estimation to quantify the noise variance of observations and improve the least square evaluation of radial errors. For analysis of radial errors, two different approaches are followed, in the first approach, the radial errors are assumed to behave like a series of trigonometric function, the coefficients of which are unknowns which should be determined from observations. In the second approach, the values of radial errors, for ascending and descending passes are determined. Our results show the efficiency of collocation algorithm for highly accurate time series analysis of altimetry observations and moreover, they reveal the effectiveness of variance component estimation for true noise specification of observations which can significantly improve the results of least square adjustment. The outcome of this study can be used to calibration of altimeters. The numerical results indicate that the mean range biases of Topex/Poseidon, Jason 1-2 and ENVISAT in the six single and dual crossover points using the first and the second methods are about 0, 84, 33, 204 and 0, 98, 41, 286 mm, respectively.\",\"PeriodicalId\":50105,\"journal\":{\"name\":\"Journal of Operational Oceanography\",\"volume\":\"43 1\",\"pages\":\"100 - 120\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operational Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/1755876X.2019.1681873\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/1755876X.2019.1681873","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

摘要为了确定径向误差对卫星测高观测值的影响,本文采用搭配法结合方差分量估计对交叉观测值进行最小二乘平差。该搭配用于海面高度观测的时间序列分析,既可以预测每个周期可能缺失的观测值,也可以在交叉点近似每个周期的观测值。此外,利用方差分量估计来量化观测值的噪声方差,改进径向误差的最小二乘估计。对于径向误差的分析,采用了两种不同的方法,在第一种方法中,假设径向误差表现为一系列的三角函数,其系数是未知的,应该从观测中确定。在第二种方法中,确定上升和下降通道的径向误差值。结果表明,配置算法对高程观测数据进行高精度时间序列分析是有效的,同时,方差分量估计对观测数据的真实噪声规格的估计是有效的,可以显著改善最小二乘平差的结果。本研究结果可用于高度计的标定。结果表明,Topex/Poseidon、Jason 1-2和ENVISAT在6个单、双交叉点的平均距离偏差分别为0、84、33、204和0、98、41、286 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of least-square collocation and variance component estimation in crossover analysis of satellite altimetry observations and altimeter calibration
ABSTRACT In this study, the collocation method accompanied with variance component estimation is used for least square adjustment of crossover observations in order to determine the effects of radial errors on the observations of satellite altimetry. The collocation is used for time series analysis of sea surface height observations both for predicting the possible missing observations in each cycle, and for approximating the observation of each cycle at crossover points. In addition, use is made of the variance component estimation to quantify the noise variance of observations and improve the least square evaluation of radial errors. For analysis of radial errors, two different approaches are followed, in the first approach, the radial errors are assumed to behave like a series of trigonometric function, the coefficients of which are unknowns which should be determined from observations. In the second approach, the values of radial errors, for ascending and descending passes are determined. Our results show the efficiency of collocation algorithm for highly accurate time series analysis of altimetry observations and moreover, they reveal the effectiveness of variance component estimation for true noise specification of observations which can significantly improve the results of least square adjustment. The outcome of this study can be used to calibration of altimeters. The numerical results indicate that the mean range biases of Topex/Poseidon, Jason 1-2 and ENVISAT in the six single and dual crossover points using the first and the second methods are about 0, 84, 33, 204 and 0, 98, 41, 286 mm, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
9.70%
发文量
8
审稿时长
>12 weeks
期刊介绍: The Journal of Operational Oceanography will publish papers which examine the role of oceanography in contributing to the fields of: Numerical Weather Prediction; Development of Climatologies; Implications of Ocean Change; Ocean and Climate Forecasting; Ocean Observing Technologies; Eutrophication; Climate Assessment; Shoreline Change; Marine and Sea State Prediction; Model Development and Validation; Coastal Flooding; Reducing Public Health Risks; Short-Range Ocean Forecasting; Forces on Structures; Ocean Policy; Protecting and Restoring Ecosystem health; Controlling and Mitigating Natural Hazards; Safe and Efficient Marine Operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信