G. Y. Aguilar-Lira, Prisciliano Hernandez, G. Álvarez-Romero, J. M. Gutiérrez
{"title":"利用修饰碳膏电极通过伏安法和人工神经网络同时定量药物样品中四种主要非甾体抗炎药","authors":"G. Y. Aguilar-Lira, Prisciliano Hernandez, G. Álvarez-Romero, J. M. Gutiérrez","doi":"10.3390/csac2021-10450","DOIUrl":null,"url":null,"abstract":"This work describes the development of a novel and low-cost methodology for the simultaneous quantification of four main nonsteroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical samples using differential pulse voltammetry coupled with an artificial neural network model (ANN). The working electrode used as a detector was a carbon paste electrode (CPE) modified with multi-wall carbon nanotubes (MWCNT-CPE). The specific voltammetric determination of the drugs was performed by cyclic voltammetry (CV). Some characteristic anodic peaks were found at potentials of 0.446, 0.629, 0.883 V related to paracetamol, diclofenac, and aspirin. For naproxen, two anodic peaks were found at 0.888 and 1.14 V and for ibuprofen, an anodic peak was not observed at an optimum pH of 10 in 0.1 mol L−1 Britton–Robinson buffer. Since these drug’s oxidation process turned out to be irreversible and diffusion-controlled, drug quantification was carried out by differential pulse voltammetry (DPV). The Box Behnken design technique’s optimal parameters were: step potential of 5.85 mV, the amplitude of 50 mV, period of 750 ms, and a pulse width of 50 ms. A data pretreatment was carried out using the Discrete Wavelet Transform using the db4 wavelet at the fourth decomposition level applied to the voltammetric records obtained. An ANN was built to interpret the obtained approximation coefficients of voltammograms generated at different drug concentrations to calibrate the system. The ANN model’s architecture is based on a Multilayer Perceptron Network (MLP) that employed a Bayesian regularization training algorithm. The trained MLP achieves significant R values for the test data to simultaneous quantification of the four drugs in the presence of aspirin.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simultaneous Quantification of Four Principal NSAIDs through Voltammetry and Artificial Neural Networks Using a Modified Carbon Paste Electrode in Pharmaceutical Samples\",\"authors\":\"G. Y. Aguilar-Lira, Prisciliano Hernandez, G. Álvarez-Romero, J. M. Gutiérrez\",\"doi\":\"10.3390/csac2021-10450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes the development of a novel and low-cost methodology for the simultaneous quantification of four main nonsteroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical samples using differential pulse voltammetry coupled with an artificial neural network model (ANN). The working electrode used as a detector was a carbon paste electrode (CPE) modified with multi-wall carbon nanotubes (MWCNT-CPE). The specific voltammetric determination of the drugs was performed by cyclic voltammetry (CV). Some characteristic anodic peaks were found at potentials of 0.446, 0.629, 0.883 V related to paracetamol, diclofenac, and aspirin. For naproxen, two anodic peaks were found at 0.888 and 1.14 V and for ibuprofen, an anodic peak was not observed at an optimum pH of 10 in 0.1 mol L−1 Britton–Robinson buffer. Since these drug’s oxidation process turned out to be irreversible and diffusion-controlled, drug quantification was carried out by differential pulse voltammetry (DPV). The Box Behnken design technique’s optimal parameters were: step potential of 5.85 mV, the amplitude of 50 mV, period of 750 ms, and a pulse width of 50 ms. A data pretreatment was carried out using the Discrete Wavelet Transform using the db4 wavelet at the fourth decomposition level applied to the voltammetric records obtained. An ANN was built to interpret the obtained approximation coefficients of voltammograms generated at different drug concentrations to calibrate the system. The ANN model’s architecture is based on a Multilayer Perceptron Network (MLP) that employed a Bayesian regularization training algorithm. The trained MLP achieves significant R values for the test data to simultaneous quantification of the four drugs in the presence of aspirin.\",\"PeriodicalId\":9815,\"journal\":{\"name\":\"Chemistry Proceedings\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/csac2021-10450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simultaneous Quantification of Four Principal NSAIDs through Voltammetry and Artificial Neural Networks Using a Modified Carbon Paste Electrode in Pharmaceutical Samples
This work describes the development of a novel and low-cost methodology for the simultaneous quantification of four main nonsteroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical samples using differential pulse voltammetry coupled with an artificial neural network model (ANN). The working electrode used as a detector was a carbon paste electrode (CPE) modified with multi-wall carbon nanotubes (MWCNT-CPE). The specific voltammetric determination of the drugs was performed by cyclic voltammetry (CV). Some characteristic anodic peaks were found at potentials of 0.446, 0.629, 0.883 V related to paracetamol, diclofenac, and aspirin. For naproxen, two anodic peaks were found at 0.888 and 1.14 V and for ibuprofen, an anodic peak was not observed at an optimum pH of 10 in 0.1 mol L−1 Britton–Robinson buffer. Since these drug’s oxidation process turned out to be irreversible and diffusion-controlled, drug quantification was carried out by differential pulse voltammetry (DPV). The Box Behnken design technique’s optimal parameters were: step potential of 5.85 mV, the amplitude of 50 mV, period of 750 ms, and a pulse width of 50 ms. A data pretreatment was carried out using the Discrete Wavelet Transform using the db4 wavelet at the fourth decomposition level applied to the voltammetric records obtained. An ANN was built to interpret the obtained approximation coefficients of voltammograms generated at different drug concentrations to calibrate the system. The ANN model’s architecture is based on a Multilayer Perceptron Network (MLP) that employed a Bayesian regularization training algorithm. The trained MLP achieves significant R values for the test data to simultaneous quantification of the four drugs in the presence of aspirin.