{"title":"弹簧加载、电缆驱动、可穿戴上肢外骨骼的建模与设计","authors":"Lelai Zhou, S. Bai, M. Andersen, J. Rasmussen","doi":"10.4173/MIC.2015.3.4","DOIUrl":null,"url":null,"abstract":"An approach to the design of wearable exoskeletons on the basis of simulation of the exoskeleton and a human body model is proposed in this paper. The new approach, addressing the problem of physical human-exoskeleton interactions, models and simulates the mechanics of both the exoskeleton and the human body, which allows designers to eectively analyze and evaluate an exoskeleton design for their function in concert with the human body. A simulation platform is developed by integrating a biomechanical model of the human body and the exoskeleton. With the proposed approach, an exoskeleton is designed for assisting patients with neuromuscular injuries. Results of the analysis and optimization are included.","PeriodicalId":49801,"journal":{"name":"Modeling Identification and Control","volume":"136 1","pages":"167-177"},"PeriodicalIF":0.9000,"publicationDate":"2015-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Modeling and Design of a Spring-loaded, Cable-driven, Wearable Exoskeleton for the Upper Extremity\",\"authors\":\"Lelai Zhou, S. Bai, M. Andersen, J. Rasmussen\",\"doi\":\"10.4173/MIC.2015.3.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach to the design of wearable exoskeletons on the basis of simulation of the exoskeleton and a human body model is proposed in this paper. The new approach, addressing the problem of physical human-exoskeleton interactions, models and simulates the mechanics of both the exoskeleton and the human body, which allows designers to eectively analyze and evaluate an exoskeleton design for their function in concert with the human body. A simulation platform is developed by integrating a biomechanical model of the human body and the exoskeleton. With the proposed approach, an exoskeleton is designed for assisting patients with neuromuscular injuries. Results of the analysis and optimization are included.\",\"PeriodicalId\":49801,\"journal\":{\"name\":\"Modeling Identification and Control\",\"volume\":\"136 1\",\"pages\":\"167-177\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2015-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modeling Identification and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4173/MIC.2015.3.4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Identification and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4173/MIC.2015.3.4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Modeling and Design of a Spring-loaded, Cable-driven, Wearable Exoskeleton for the Upper Extremity
An approach to the design of wearable exoskeletons on the basis of simulation of the exoskeleton and a human body model is proposed in this paper. The new approach, addressing the problem of physical human-exoskeleton interactions, models and simulates the mechanics of both the exoskeleton and the human body, which allows designers to eectively analyze and evaluate an exoskeleton design for their function in concert with the human body. A simulation platform is developed by integrating a biomechanical model of the human body and the exoskeleton. With the proposed approach, an exoskeleton is designed for assisting patients with neuromuscular injuries. Results of the analysis and optimization are included.
期刊介绍:
The aim of MIC is to present Nordic research activities in the field of modeling, identification and control to the international scientific community. Historically, the articles published in MIC presented the results of research carried out in Norway, or sponsored primarily by a Norwegian institution. Since 2009 the journal also accepts papers from the other Nordic countries.