城市云NSSA系统结构负荷预测

Jing Chang, Dong Liu
{"title":"城市云NSSA系统结构负荷预测","authors":"Jing Chang, Dong Liu","doi":"10.1109/ICCC47050.2019.9064105","DOIUrl":null,"url":null,"abstract":"Substantial progress has been achieved in improving the accuracy and speed of load forecasting for city cloud network security situation awareness (NSSA) system structure. In this paper, the radial basis function (RBF) neural network for awareness was optimized by using the alternating gradient algorithm, so as to forecast the load for city cloud NSSA. The modified simulation algorithm based on experimental data was powerful in load forecasting for city cloud NSSA. Compared with the conventional gradient algorithm for network awareness, the modified algorithm featured faster convergence speed and higher load forecasting accuracy.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"3 1","pages":"2024-2028"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load Forecasting for City Cloud NSSA System Structure\",\"authors\":\"Jing Chang, Dong Liu\",\"doi\":\"10.1109/ICCC47050.2019.9064105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Substantial progress has been achieved in improving the accuracy and speed of load forecasting for city cloud network security situation awareness (NSSA) system structure. In this paper, the radial basis function (RBF) neural network for awareness was optimized by using the alternating gradient algorithm, so as to forecast the load for city cloud NSSA. The modified simulation algorithm based on experimental data was powerful in load forecasting for city cloud NSSA. Compared with the conventional gradient algorithm for network awareness, the modified algorithm featured faster convergence speed and higher load forecasting accuracy.\",\"PeriodicalId\":6739,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Computer and Communications (ICCC)\",\"volume\":\"3 1\",\"pages\":\"2024-2028\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC47050.2019.9064105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在提高城市云网络安全态势感知(NSSA)系统结构负荷预测的准确性和速度方面取得了实质性进展。本文采用交替梯度算法对径向基函数(RBF)神经网络进行感知优化,以预测城市云NSSA的负荷。基于实验数据的改进仿真算法在城市云NSSA负荷预测中具有较强的应用价值。与传统的网络感知梯度算法相比,改进后的算法具有更快的收敛速度和更高的负荷预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load Forecasting for City Cloud NSSA System Structure
Substantial progress has been achieved in improving the accuracy and speed of load forecasting for city cloud network security situation awareness (NSSA) system structure. In this paper, the radial basis function (RBF) neural network for awareness was optimized by using the alternating gradient algorithm, so as to forecast the load for city cloud NSSA. The modified simulation algorithm based on experimental data was powerful in load forecasting for city cloud NSSA. Compared with the conventional gradient algorithm for network awareness, the modified algorithm featured faster convergence speed and higher load forecasting accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信