{"title":"对流层对超高频无线电波的影响","authors":"J. Iloke, U. J. Ekah, Igwe O. Ewona","doi":"10.9734/ajr2p/2022/v6i3121","DOIUrl":null,"url":null,"abstract":"This research investigates the effects of temperature and relative humidity on UHF signals. A spectrum analyzer was used in measuring UHF signals while a digital thermometer and hygrometer was used in measuring temperature and relative humidity, respectively. From results obtained, relative humidity had no significant effect on measured path loss while a positive correlation coefficient was obtained between temperature and measured path loss. This implies that an increase in temperature will lead to a decrease in received signal strength of UHF signals. Furthermore, a path loss propagation model for Calabar (PL = 37.920 + 2.796T + 0.290R + ) was obtained using multiple regression analysis and we believe that the obtained result will be useful to radio engineers for UHF signal propagation in the study terrain.","PeriodicalId":8529,"journal":{"name":"Asian Journal of Research and Reviews in Physics","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tropospheric Influence on Ultra-High Frequency (UHF) Radio Waves\",\"authors\":\"J. Iloke, U. J. Ekah, Igwe O. Ewona\",\"doi\":\"10.9734/ajr2p/2022/v6i3121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the effects of temperature and relative humidity on UHF signals. A spectrum analyzer was used in measuring UHF signals while a digital thermometer and hygrometer was used in measuring temperature and relative humidity, respectively. From results obtained, relative humidity had no significant effect on measured path loss while a positive correlation coefficient was obtained between temperature and measured path loss. This implies that an increase in temperature will lead to a decrease in received signal strength of UHF signals. Furthermore, a path loss propagation model for Calabar (PL = 37.920 + 2.796T + 0.290R + ) was obtained using multiple regression analysis and we believe that the obtained result will be useful to radio engineers for UHF signal propagation in the study terrain.\",\"PeriodicalId\":8529,\"journal\":{\"name\":\"Asian Journal of Research and Reviews in Physics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Research and Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajr2p/2022/v6i3121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Research and Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajr2p/2022/v6i3121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tropospheric Influence on Ultra-High Frequency (UHF) Radio Waves
This research investigates the effects of temperature and relative humidity on UHF signals. A spectrum analyzer was used in measuring UHF signals while a digital thermometer and hygrometer was used in measuring temperature and relative humidity, respectively. From results obtained, relative humidity had no significant effect on measured path loss while a positive correlation coefficient was obtained between temperature and measured path loss. This implies that an increase in temperature will lead to a decrease in received signal strength of UHF signals. Furthermore, a path loss propagation model for Calabar (PL = 37.920 + 2.796T + 0.290R + ) was obtained using multiple regression analysis and we believe that the obtained result will be useful to radio engineers for UHF signal propagation in the study terrain.