不同椭圆曲线模型上的有理序列

Pub Date : 2019-03-17 DOI:10.3336/gm.54.1.04
Gamze Savacs cCEL.IK, M. Sadek, G. Soydan
{"title":"不同椭圆曲线模型上的有理序列","authors":"Gamze Savacs cCEL.IK, M. Sadek, G. Soydan","doi":"10.3336/gm.54.1.04","DOIUrl":null,"url":null,"abstract":"Given a set $S$ of elements in a number field $k$, we discuss the existence of planar algebraic curves over $k$ which possess rational points whose $x$-coordinates are exactly the elements of $S$. If the size $|S|$ of $S$ is either $4,5$, or $6$, we exhibit infinite families of (twisted) Edwards curves and (general) Huff curves for which the elements of $S$ are realized as the $x$-coordinates of rational points on these curves. This generalizes earlier work on progressions of certain types on some algebraic curves.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rational sequences on different models of elliptic curves\",\"authors\":\"Gamze Savacs cCEL.IK, M. Sadek, G. Soydan\",\"doi\":\"10.3336/gm.54.1.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set $S$ of elements in a number field $k$, we discuss the existence of planar algebraic curves over $k$ which possess rational points whose $x$-coordinates are exactly the elements of $S$. If the size $|S|$ of $S$ is either $4,5$, or $6$, we exhibit infinite families of (twisted) Edwards curves and (general) Huff curves for which the elements of $S$ are realized as the $x$-coordinates of rational points on these curves. This generalizes earlier work on progressions of certain types on some algebraic curves.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.54.1.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.54.1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定数域$k$中元素的集合$S$,讨论了$k$上具有有理点的平面代数曲线的存在性,这些有理点的$x$坐标正是$S$的元素。如果$S$的$|S|$的大小为$4,5$或$6$,我们展示了无限的(扭曲的)Edwards曲线和(一般的)Huff曲线族,其中$S$的元素被实现为这些曲线上有理点的$x$坐标。这推广了先前关于某些代数曲线上某些类型级数的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rational sequences on different models of elliptic curves
Given a set $S$ of elements in a number field $k$, we discuss the existence of planar algebraic curves over $k$ which possess rational points whose $x$-coordinates are exactly the elements of $S$. If the size $|S|$ of $S$ is either $4,5$, or $6$, we exhibit infinite families of (twisted) Edwards curves and (general) Huff curves for which the elements of $S$ are realized as the $x$-coordinates of rational points on these curves. This generalizes earlier work on progressions of certain types on some algebraic curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信