LNG溢油爆燃的动态模拟

IF 1.5 Q3 ENGINEERING, CHEMICAL
Biao Sun, K. Guo, V. Pareek
{"title":"LNG溢油爆燃的动态模拟","authors":"Biao Sun, K. Guo, V. Pareek","doi":"10.1155/2019/7439589","DOIUrl":null,"url":null,"abstract":"The deflagration characteristics of premixed LNG vapour-air mixtures with different mixing ratios were quantitatively and qualitatively investigated by using CFD (computational fluid dynamics) method. The CFD model was initially established based on theoretical analysis and then validated by a lab-scale deflagration experiment. The flame propagation behaviour, pressure-time history, and flame speed were compared with the experimental data, upon which a good agreement was achieved. A large-scale deflagration fire during LNG bunkering process was conducted using the model to investigate the flame development and overpressure effects. Mesh independence and time scale were tested in order to obtain the suitable grid resolution and time step. Deflagration cases with two different LNG vapour volume fractions, i.e., 10.4% and 15.0%, were simulated and compared. The one with a volume fraction of 10.4% which was around stoichiometric mixing ratio had the highest flame propagating speed. High flame velocity observed in the simulation was coupled with the thin flame front where overpressure occurred. The CFD model could capture the main features of deflagration combustion and account for LNG fire hazard which could provide an in-depth insight when dealing with complicated cases.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Simulation on Deflagration of LNG Spill\",\"authors\":\"Biao Sun, K. Guo, V. Pareek\",\"doi\":\"10.1155/2019/7439589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deflagration characteristics of premixed LNG vapour-air mixtures with different mixing ratios were quantitatively and qualitatively investigated by using CFD (computational fluid dynamics) method. The CFD model was initially established based on theoretical analysis and then validated by a lab-scale deflagration experiment. The flame propagation behaviour, pressure-time history, and flame speed were compared with the experimental data, upon which a good agreement was achieved. A large-scale deflagration fire during LNG bunkering process was conducted using the model to investigate the flame development and overpressure effects. Mesh independence and time scale were tested in order to obtain the suitable grid resolution and time step. Deflagration cases with two different LNG vapour volume fractions, i.e., 10.4% and 15.0%, were simulated and compared. The one with a volume fraction of 10.4% which was around stoichiometric mixing ratio had the highest flame propagating speed. High flame velocity observed in the simulation was coupled with the thin flame front where overpressure occurred. The CFD model could capture the main features of deflagration combustion and account for LNG fire hazard which could provide an in-depth insight when dealing with complicated cases.\",\"PeriodicalId\":44364,\"journal\":{\"name\":\"Journal of Combustion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/7439589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/7439589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

采用计算流体力学(CFD)方法,对不同混合比的LNG蒸汽-空气预混料的爆燃特性进行了定量和定性研究。在理论分析的基础上初步建立了CFD模型,并通过室内爆燃实验对模型进行了验证。将火焰传播特性、压力-时间历史和火焰速度与实验数据进行了比较,结果与实验数据吻合较好。利用该模型对液化天然气加注过程中发生的大规模爆燃火灾进行了火焰发展和超压效应研究。为了获得合适的网格分辨率和时间步长,对网格独立性和时间尺度进行了测试。模拟和比较了两种不同液化天然气蒸气体积分数(10.4%和15.0%)下的爆燃情况。当体积分数为10.4%时,在化学计量混合比附近,火焰传播速度最快。模拟中观察到的高火焰速度与发生超压的薄火焰锋面相耦合。该CFD模型能够捕捉爆燃燃烧的主要特征,并考虑到LNG的火灾危险,可以在处理复杂情况时提供深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Simulation on Deflagration of LNG Spill
The deflagration characteristics of premixed LNG vapour-air mixtures with different mixing ratios were quantitatively and qualitatively investigated by using CFD (computational fluid dynamics) method. The CFD model was initially established based on theoretical analysis and then validated by a lab-scale deflagration experiment. The flame propagation behaviour, pressure-time history, and flame speed were compared with the experimental data, upon which a good agreement was achieved. A large-scale deflagration fire during LNG bunkering process was conducted using the model to investigate the flame development and overpressure effects. Mesh independence and time scale were tested in order to obtain the suitable grid resolution and time step. Deflagration cases with two different LNG vapour volume fractions, i.e., 10.4% and 15.0%, were simulated and compared. The one with a volume fraction of 10.4% which was around stoichiometric mixing ratio had the highest flame propagating speed. High flame velocity observed in the simulation was coupled with the thin flame front where overpressure occurred. The CFD model could capture the main features of deflagration combustion and account for LNG fire hazard which could provide an in-depth insight when dealing with complicated cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combustion
Journal of Combustion ENGINEERING, CHEMICAL-
CiteScore
2.00
自引率
28.60%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信